学年

教科

質問の種類

数学 高校生

ピンクのマーカーで目印をつけているところが、どういう事なのか分かりません。 どこをどうとって解と係数の関係があるのでしょうか?

290 本 例題 184 3次関数の極大値と極小値の和 αは定数とする。 f(x)=x+ax²+ax +1 が x=α, B (a</) を る。 f(a)+f(B)=2のとき、定数αの値を求めよ。 CHART & SOLUTION 3次関数f(x)がx=α,β で極値をとるから、α.8は2次方程式(x) = 0 しかし、f(x) = 0 の解を求め、それを(w)+f(B)=2に代入すると計算が増 f(a)+f(8) はαとβの対称式になるから まと 数学Ⅱ p.283 のである。 の特徴 3次 20 αβの対称式 基本対称式α+β, αβ で表されるに注目して変形。・ なお、α+ ß,aβ は,f(x)=0 で解と係数の関係を利用するとαで表される。 解答 f'(x) =3x2+2ax+α f(x) が x=α, β で極値をとるから, まず、f(x)が極値を f'(x) = 0 すなわち 3x2 +2ax+α=0 は異なる2つの実数解 α, β をもつ。 つようなαの範囲を めておく(基本例題1 (1) と同様)。 ①の判別式をDとすると D = a² -=a²-3a=a(a-3) D> 0 から a<0, 3<a ② また、①で,解と係数の関係により 2 a+b=-ga,ab=- ここで f(α)+f(B)=α+ax²+aa+1+3+a2+aß +1 =(ω°+β)+a(a2+β2) + α (a +β) +2 =(a+B)-3aB(a+B)+α{(a+B)2-2aß}+α(a+β)+2 α³+B³ =(a+B)-3aB(a+B), a2+B2=(a+B)^2aB ← α, β を消去。 +a(-a)-2a)+(-a)+2 -7a-4a²+2 (a)+f(B)=2から 12/17/20°+2=2 よって 2a3-9a2=0 すなわち a²(2a-9)=0 9 ②を満たすものは a= inf. この問題では極大値 と極小値の和f(a)+f(B) を考えた。 極大値(もしく は極小値)を単独で求める 必要がある場合に、 極値の x座標であるα (もしくは β) の値が複雑な値のとき は EX 148 を参照。 RACTICE 184Ⓡ 関数 f(x)=2x+ax²+(a-4)x+2の極大値と極小値の和が6であるとき、定数。 の値を求めよ。 [類 名城大

解決済み 回答数: 1
数学 高校生

青チャート125がわからないです!!! 最後の方に変数をx.yに置き換えるとありますが、 XとYは最初にx+y、xyとおいたのでそっちに戻すと考えてしまいます、 どなたか教えていただきたいです!🙇‍♂️

重要例題125点(x+y, xy) の動く領域 00000 実数x, y が x2+y' ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域を 図示せよ。 指針▷ x+y=X, xy=Yとおいて,X,Yの関係式 を導けばよい。 ① 条件式x2+y'≦1 を X, Yで表す。 →x2+y^2=(x+y)²-2xy を使うと ->> しかし、これだけでは誤り! X2-2Y≤1 重要1230 変数のおき換え 範囲に注意 ② x, y が実数として保証されるようなX, Yの条件を求める。 → x, yは2次方程式ピー(x+y)t+xy=0 すなわち-Xt+Y=0の2つの解では るから,その実数条件として 判別式 D=X2-4Y≧0 解答 X=x+y, Y=xy とおく。 x2+y2≦1から したがって (x+y^2xy1 すなわち X2-2Y≦1 X2 Y≥ x²-1..... 10 ① また,x, yは2次方程式(x+y)t+xy=0 すなわち f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると ここで D≧0 D=(-X)2-4・1・Y=X2-4Y よって, X2-4Y ≧ 0 から 2数α, βに対して p=a+B, q=aß とすると, α βを解とする 2次方程式の1つは x-px+q=0 X2 Y≤ **........ (2) ① ①,②から X2 2 2 変数を x, y におき換えて x2 1 2 したがって, 求める領域は, 右の図の 斜線部分。ただし、 境界線を含む。 12 12 2 12 /2 4 2 2 11/01/10 とすると 検討 実数条件(上の指針の2)が必要な理由 X,YO x+y=X, xy=Y が実数であったとしても,それがx2+y'≦1 を満たす虚数x, Yの値という可能性がある。例えば、x=1/21+1/2/i.y=1/12/2 xy= 1 yに対応した iのとき x+y=1(実数) - (実数) で, x'+y'≦1 を満たすが x, yは虚数である。このような(x, y) を除外する めに実数条件を考えているのである。 練習 125 きの 座標平面上の点(p.4) 21

解決済み 回答数: 1
1/681