学年

教科

質問の種類

数学 高校生

どうして青丸の部分は×になるのですか?? 私は間違えて足してしまいました🫠

例題 200 加法 →例題199 1から9までの数字を書いた 9 枚の番号札がある。この中から同時に3枚の 札を取り出すとき, 数字の和が奇数になる確率を求めよ。 Action 何通りかある事象は、排反事象に分けて考えよ 解法の手順・ ・1 | 数字の和が奇数になる場合を考える。 2それぞれの場合の確率を求める。 3加法定理を利用して、 確率を求める。 ....... 解答 9枚の番号札から3枚を取り出す場合の数は Cg 通り 取り出した3枚の札の数字の和が奇数になるのは,次の2つ の場合がある。 (ア) 3枚とも奇数の場合 (イ) 1枚が奇数で2枚が偶数の場合 (ア),(イ) の事象をそれぞれ A, B とすると,確率を求める事象 は AUB である。 (ア)事象 A が起こるのは、5枚の奇数から3枚を取り出すと きであるから,その確率は 5 C3 5 9 C3 42 (イ) 事象 B が起こるのは, 5枚の奇数から1枚と,4枚の偶 数から2枚を取り出すときであるから, その確率は P(B) = 5C1 X C2 15 9 C3 42 A,Bは互いに排反であるから、求める確率は one of ................ P(AUB)=P(A)+P(B) = P(A) = 5 15 10 + 42 42 = 21さん 12 = 9.8.7 19C3 = 84 3・2・1 和が奇数になるのは,こ の2通りで,同時には起 こらない。 = 奇数は 1,3,5,7,9の 5枚 偶数は2, 4, 6,8の4枚 約分せずにP(A) の分母 裏参脚を転泡とそろえておく。 AとBが同時に起こ ることがない。

回答募集中 回答数: 0
数学 高校生

下のpointに書いてあることって、(1)もそうじゃないんですか??100円玉4枚➡️50円玉8枚なので… 違いがよく分からないので教えてください🙇‍♀️💦

→例題 165 例題 166 積の法則 [2]数えあげ 次のような枚数の硬貨があるとき,そのうちの一部または全部を用いて,ちょ うど支払える金額の種類は全部で何通りあるか。 (1) 100円硬貨4枚 50円硬貨1枚, 10円硬貨3枚 (2) 100円硬貨2枚, 50円硬貨 2枚,10円硬貨 3枚 NO Action 支払える金額の種類は,同じ金額を表す硬貨に注意して数えよ ・・・・・・・1 | 同じ金額となる支払い方を調べる。 解法の手順・ 2 各硬貨の使い方は何通りずつあるか求める。 32 の場合から, 硬貨を1枚も使わない場合を除く。 解答 (1) 用いる硬貨の種類や枚数が異なるとき, 支払える金額は 必ず異なる。 100 円硬貨の使い方は, 0, 1,2,3,4枚の5通り 50 円硬貨の使い方は, 0, 1枚の 2通り 10 円硬貨の使い方は, 0, 1,2,3枚の 4通り よって, 求める場合の数は 5×2 × 4-1=39 (通り) (2) 50円硬貨 2枚と100円硬貨1枚は,同一の金額を表すか ら100円硬貨 2枚を50円硬貨4枚と考えて, 50円硬貨 6 枚,10円硬貨3枚で支払える金額の種類を求める。 50円硬貨の使い方は, 0, 1, 2,3,4,5,6枚の7通り 10円硬貨の使い方は, 0, 1, 2,3枚の 4通り よって, 求める場合の数は 7 × 4-1 = 27 (通り) 「支払える金額」である から0円の場合を除く。 100 円硬貨 2枚と50円硬 貨2枚を組み合わせる と50円きざみで50円 から300円まで支払うこ とができるから50円硬 貨が6枚と考えられる。 下のPoint 参照 0円の場合を除く。 Point 同じ金額となる硬貨の組合せがあるときの注意 例題166 (2) において, 例えば 「100円 1枚, 50円 2枚 10 円 1枚」 と 「100円 2枚 50円 0枚, 10円1枚」 は硬貨の 組合せが異なるが, 金額は同じ210円である。 このように 同じ金額となる硬貨の組合せがあるときは,金額の大きい硬貨を小さい硬貨に換算する ことで、支払える金額の種類を重複なく考えることができる。 50 100 8 *RE 2 A 50 例題 大 道 A 解シ

回答募集中 回答数: 0
数学 高校生

青線部の「そのおのおのに対して…」のところが、どうしてそのようになるのか分からないので教えて欲しいです🙇‍♀️

よって、奇数の個数は3×P=3×4・3・2・1=72 (個) 2 男子4人, 女子3人, 計7人の生徒がいる。 (1) 7人を1列に並べるとき, 女子が隣り合わない並べ方は 通りある。 (2) 7人を輪の形に並べるとき, 女子3人のうち女子2人だけが隣り合う並べ方は 通りある。 (1) 女子が隣り合わないように並ぶには、 まず男子4人が並び, その間または両端に女 子3人が並べばよい。 男子4人の並べ方は 4P4=24 (通り) そのおのおのに対して, 男子の間と両端の5か所に女子3人が並ぶ方法は 5P3=60 (通り) よって, 求める並べ方の総数は 24x60 = "1440 (通り) (3) 女子3人のうち2人だけが隣り合うように並ぶには、 まず男子4人が輪の形に並び, その間の4か所のうち1か所に女子1人, 他の1か所に女子2人が並べばよい。 男子4人を輪の形に並べる方法は (4-1)!=6 (通り) 男子4人の間の4か所のうち1か所に女子1人を並べる方法は 4×3=12 (通り) 残り3か所のうち1か所に女子2人を並べる方法は 3×2=6 (通り) したがって 求める並べ方の総数は 6×12×6=432 (通り) 3 不等式 10g (x +5) + logs (x-3) <2を解け. 真数は正であるから x +5 > 0, x-3> 0 すなわち x>3 .....(1

回答募集中 回答数: 0
1/8