学年

教科

質問の種類

数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0
数学 高校生

なんで青線の①の式から辺BCが2:3に内分すると分かったのか謎だし、線分ADを5:6に内分すると言うのもどう考えたら出るのか全くわからないので手がつきません😭😭😭😭🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️教えてください🙏

基本例題 22 分点に関するベクトルの等式と三角形の面積比 ①①①①① △ABCの内部に点Pがあり, 6PÂ +3P+2PC = 0 を満たしている。 (1) 点Pはどのような位置にあるか。 (2) APAB, APBC, APCA の面積の比を求めよ。 解答 (1) 等式を変形すると 指針▷ (1) αPA+6PB+cPC = の問題点Aに関する位置ベクトルAP, AB, AC の式に 直し、AP=k nAB+mAC m+n の形を導く。 A (2) 三角形の面積比 等高な底辺の比②2 等底なら高さの比を利用して,各 三角形と△ABCとの面積比を求める。その際, (1) の結果も利用。 よって -6AP+3(AB-AP) +2(AC-AP)=0 11AP=3AB+2AC ① ゆえに ゆえに AP= 5,3AB+2AC 5 辺BCを2:3に内分する点をDと すると AP-AD したがって, 辺BCを2:3に内分 する点をDとすると, 点Pは線分 AD を 56 に内分する位 置にある。 (2) △ABCの面積をSとすると △PAB= 51.4 △ABD= 6 △PBC= …AABC= 11 APCA-A -.AACD= B 6 53 11 5 D n △ABC=11S •AABC=ns APAB: APBC: APCA = S: S: S p.413 基本事項 [②2] [類 名古屋市大] 基本58 C =2:6:3 差の形に分割。 AB, AC の数に注目す ると,線分 BC の内分点の 3AB+2AC 2+3 位置ベクトル の形に変形することを思い つく。 【等高S,S, S,S,- [参考] 一般に, △ABCと点Pに対し, IPA+mPB+nPC=0 を満たす正の数m,nが存在す るとき,次のことが成り立つ。 (1) 点Pは△ABCの内部にある。 (2) APBC: APCA: APAB=1:m:n

回答募集中 回答数: 0
数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
1/3