学年

教科

質問の種類

数学 高校生

(3)までは解けたのですが、(4)に関しては合成関数の微分などを使いながら強引にやってみたのですが、おそらく間違っているので正しい解答を教えてほしいです。

0 私大対策数学 【同志社/立命館】 25 座標平面上に曲線C:y=ex (x>0) と曲線 D: y=1 + log x(x>0) がある。 (1) C上の点P(s,ers)におけるCの接線を l とする。 接線 l の方程式をsを用いて表せ。 (2)D上の点Q(1+10gt) における D の接線 は (1) の接線 l と垂直に交わるとする。 このとき,ts を用いて表せ。 (3)(1)の接線lの切片をu とし,u をs の関数と考える。このとき,s>0 においてぇは単調に減 示せ。さらに,sがs>0の範囲を動くとき,"の値域は>1であることを示せ。 少することを (4)(3)のsu(1) に対して,sを”の関数と考える。このとき, ds をsを用いて表せ。 さら に,sで表さ du れた (2) のに対して, du dt =1 となるuの値を求めよ。 ただし, suの関数とし て微分可能であることを証明な 1 しに用いてよい。 te (1) C: y = ex. (-) 1 xe 1 : 1 = -e(x-s) +e=ex+e(+) (2) D:y=1/ mの 傾きは↓で、条件より、 e² = = - 1 1 = ± e² (3) u = (1 + 1 ) = (1+1) + (-)--(1+())-(2+) SSDにおいて、U'<Oより、題意を満たす。 (4s+//+5) u (2)²² lim bmu=1 よって、SDのとき、">] (2+1) (+)/ (4)=(1/2)について両辺について微分すると =(1/2)(1+1/2)+(-1/23s') -s' (2+1/2)=1 1-$ JJ = dt du S S= S(2+1) 5.5·1-3) (S)(2+1 S (2 + 1/3) e' s 1] 1 S S s' (2+ √ √3)² 45+//+5 (2+3) es (25 (2+)²) - s² ² ² + (a + })() (2 + √ √ √) ² e ³ ³ ³ S S2 (2+3)= (2+3)²

解決済み 回答数: 1
数学 高校生

(1)も(2)も違うんですが、私の解き方は何が違うのかわかんないです💦

PILO Op PLASTIC 追加 スマートフォン 例題解説動 入の方は追加 ※解説動画は、 年4月までに順 80 重要 例題 44 解と係数の関係と式の値 解のおき換えを利用 | 2次方程式 2x2+4x+3=0の2つの解をα, β とする。 このとき, | (α-1)(-1)=であり,(α-1)+(B-1)=である。 [慶応大 基本4 指針 α+β, αβ で表し,解と係数の関係の利用の方針では、(イ)の計算が大変。 そこで, α-1=y, B1=8 (8は 「デルタ」と読む) (イ)はy*+8 の値を求める問題となる。 ここで ①から α=y+1,β=8+1 ② ① とおくと, (ア)は2 また,α,Bは2x2+4x+3=0 ③の解であるから,②③に代入して整理する ※解説動画は、 2次元コード と 2y2+8y+9=0, 282+88+9=0 すなわちは2次方程式 2x²+8x+9=0 の解である。 α-1=y, β-1=δ とおくと α=y+1,β=8+1 解答 α β は 2x2+4x+3=0の解であるから, y, δは2次方程α, β に対し, α-1,B-1 ①の解である。 式 2(x+1)+4(x+1)+3=0 ・・・ 基本 例題 45 2次方程式ャー めよ。 (1) 1つの解が- 指針 解の公式 係数(定 2つの解 (1) 1つ よっ (2) も同 CHAI 青チャー 日常学習 入試対策 選び抜かれ あり 効率 種々の解訓 学の知識 ① の左辺を展開して整理すると 2x2+8x+9=0 解と係数の関係から y+8=-4, yδ= 9 を解とする2次方程式を 新たに作成する。 そして 作成した方程式に対し、 解と係数の関係を利用す る。 (1) 2つ 解答 解と信 すな (ア) (a-1)(B-1)=y8=1212 (イ) (α-1)*+(B-1)*=y'+8*=(y2+82)2-27282 ■考える力 ={(y+8)^-2r8}'-2 (yô ) 2 例題ページ 針をどの 問題の解 法にたど えること 2x²+4x+3 =2(x-α)(x-β)の両 辺にx=1を代入して 2-12+4.1+3 =2(1-α) (1-β) ゆえ (2)2- 解と すな ①カ ② これから求めてもよい。 した おき換えないで解く =(16-9)-31-17 上の解答のように,Y, δとおき換えず,次のように答えてもよい。 解と係数の関係より、 a+β=-2, aß=1232 であるから ダ どこでも 検討 3 エスビュー 書をタブレッ いつでも, また デジタルなら ゆえに よって (a-1)(B-1)=aß-(a+B)+1=32-(-2)+1= (-1)+(B-1)=a+β-2=-2-2 = -4 (-1)+(B-1)={(a-1)+(B-1)-2(α-1)(B-1)=(-4) -2.1=7 (3-1) = ここでも α-1, β-1を1つのかたまりとして見ることが大切である。 練習 2次方程式 x2-3x+7=0の2つの解を 92 2 POINT 2解 検討 検算 例え ゆえ 解答 練習 (1) ② 45

解決済み 回答数: 1
数学 高校生

この問題のキクで、どの部分からRQは円O”の弦(円周を通る)ことがわかりますか? 解説お願いします🙏

②メモ 20€ OF step2 速効を使って問題を解く アプローチ 点Aにおける円 0の接線上に点Pをとり、 Pから円0にもう1本の接線を引き、その接点をBとする。 2点0.0をそれぞれ中心とする2つの円がある。 円0の内部に円があり、2つの円は1点で接している らに、点Pと点を結ぶ直線と円′との交点をPに近い方から順に Q,R とする。 (2)直線PR が∠OPAを2等分しているとする。さらに円の半径が6でPA=8とする。このとき、 ウエであり,したがって円0′の半径は OP= である。 次に, 3点 Q,R, Bを通る円の中心を0" とし, 00'0” の内角の間の関係を調べる。 (1)によりO" は線分 OB上にある。 ∠00'0"=0 とおくと, ∠APO'=90°∠PO'A=90° <RO'Oかつ, ∠RO′O" [R 0 B (参考図) P A ア と には、次の⑨のうちから正しいものを1つずつ選べ。 O ARAQ ① ARPR ② PQ PR ③ PQ QR ④ PR QR 5 ARQ ⑥ BQR PQA 8 PRB QBR なので,∠APO' = 0 とな コ る。ゆえに、COSO= 10 である。 また, 四角形O" O'PBは円に内接するので、 O'O"Oシ 0となる。 解答 番号 ア イウ H 土 解答欄 456789 78 (1)3点 Q,R,Bを通る円が点Bで直線 PBに接することを示そう。 接線と弦のつくる角についての 質より∠PAQ = ∠PRAなので, △PAQと△PRAは互いに相似である。 したがって, PA'=アで ある。一方,PA=PBだからPB2=アでもある。よって, APBQとイは互いに相似となり、 ∠PBQ= ∠イとなる。ゆえに, 3点 Q,R, B を通る円は点Bで直線 PBに接することになる。 オ キ ク ケ ⑧⑨ コ サ ① 土 (0) 678 '04 センター試験 追試 数学Ⅰ・A

解決済み 回答数: 1
1/17