学年

教科

質問の種類

数学 高校生

この問題の3番目の問題についてなんですが,この場合全ての整数が,0,1のどちらかになっていないと成立しないと思ってて,例えば、a1が3で他の解が0の時が想定されてないと思いました。 私の考え方の間違っている部分を教えてください

386 okakaka<a<a<9 次の条件を満たす整数の組 (a1,a2, 3, 4, 重要 例題 34 数字の順列 (数の大小関係が条件) (2) 0≤a≤a2a3 a4 a5≤3 α5) の個数を求めよ。 0000 基本32 88 3個の数字から異な 異なる 4個の数字から重複を 解答 (1) Kaz (3) aitaztastastas≦3, a≧0 (i=1,2,3,4,5) 指針 (1) α1, 2,..., as はすべて異なるから, 1, 2, ・・・・・, 個を選び,小さい順に,a1,a2, ..., as を対応させればよい。 求める個数は組合せ Cs に一致する。 (2)(1) とは違って、条件の式にを含むから, 0, 1, 2, 34 して5個を選び,小さい順に aaaa5を対応させればよい。 求める個数は重複組合せ&Hs に一致する。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 ataztastastas+6=3 3-(a+a2+as+a+αs) =bとおくと また, a+az+αs+a+αs≦3から b≥0 よって、 基本例題 33(1) と同様にして求められる。 (1) 1, 2,......, 8の8個の数字から異なる5個を選び, 小 さい順に a1,a2, ....., 45 とすると, 条件を満たす組が 1つ決まる。 よって, 求める組の個数は 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に α1, 2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4Hs=4+5-1Cs=8C5=56(個) (3) 3-(a1+a2+as+a+αs)=bとおくと a1+a2+as+a+as+b=3, ai≧0 (i=1,2,3,4,5),60 ...... ① よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k=0, 1, 2, 3) を満たす 0 以上の整数の組 (a1, A2, 3, 4, 5) の数は5Hであ るから 5Ho+5H1+5H2+5H3 =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 検討 一等式 (2),(3)は次のように 解くこともできる。 (2) [p.384 PLU ONE の方法 bi=aiti(i=1,2 4, 5) とすると, 0<bı <b<by<br< と同値になる。』 (1)の結果から (3)3個の○と 切りを並べ、例 ||0|100|| 合は(0,1,0, を表すと考える このとき A|B|C|D とすると,A, D, E の部分に の数をそれぞ a3, 4, as と 組が1つ決ま 8C3=56( 5桁の整数nにおいて, 万の位, 千の位, 百の位、十の位、一の位の数字を a, b, c, d, e とするとき, 次の条件を満たすnは何個あるか。 (1) a>b>c>d>e _3) a+b+c+d+e≦6 (2) a≧bcd≧e

未解決 回答数: 1
数学 高校生

0<=t<=1とはどういうことですか、教えてください。

例題 131 三角 00180°において、方程式 2cos°0-5sin0 +1=0を満たす0の他 Joies 100 を求めよ。 思考プロセス 変数を減らす 一方を消去 sin と cose sin0 (または cos0 ) だけの方程式 既知の問題に帰着 int とおく で tの方程式 を含む方程式 /sin'0+cos'0=1 置き換えたもの 値の範囲に注意 の利用 Action 三角比の2乗を含む式は、1つの三角比で表せ を利用せよ RoAction 文字を置き換えたときは、その文字のとり得る値の範囲を考えよ 例題76 扇 cos20=1-sin0 であるから,与式は19歳与えられた方程式の1次 2 (1-sin20)-5sin0+1 = 0 2sin0+5sin0-3 = 0 の項が sind であるから、 sin0 だけの式にする。 ... 1 ここで,sin0 = t とおくと,0°≧≦180°より心agoioad 0 ≤1 ≤1 方程式 ① は 2t2+5t-3=0 (t+3)(2t-1)= 0 1 よって t = -3, 2 置き換えた文字のとり 得る値の範囲に注意する。 Onia d 3 → 6 1 0≦t1であるから t= 1-2 031 01 YA sin0 = -3 を満たす角 1 130 すなわち sin - 1 12 2 ( は存在しない。 2 P したがって, 求める 0 は 0 = 30°,150° 単位円上で座標が 1/2 1 x となる点は,図の2点P, P'である。 05 Point... sin0, cost の2乗を含む方程式の解法の手順 ①sin°0 + cos 0 = 1 を用いて sind (または cose) だけの方程式をつくる。 (2) sint (または coset) とおいて, tの2次方程式をつくる ③置き換えた文字のとり得る値の範囲を求める (4 0° 0≦sin≦1 より 180°のとき, (または1 ≦ cosd ≦1 より - ③の範囲に注意して②のもの方程式を解く。 単位円を用いて,の値を求める 0 st≤1 TO

未解決 回答数: 0