学年

教科

質問の種類

数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0