学年

教科

質問の種類

数学 高校生

高次方程式についての質問です。紫のアンダーラインを引いたω*2+ω+1=0には何故のこの式が成り立つのかの証明がなかったのに、ω*3=1は何故式の成り立ちが証明されているのでしょうか。二枚目は一問前の問題で、これには、性質についてまず証明しろと書いてあります。何故ω*2+ω... 続きを読む

1の3乗根の虚数のうちの 「解答 これから使う性質に ついてまず証明して おく. ***** ■よ.ただし,n は整数と 1 1)2-1 (岡山県立大改) コ) = 0 より wはx=1 の解 例題 56 x'+x+1による割り算の (1) a, b が実数, zが虚数のとき を証明せよ. a+bz=0 a=0 かつ b=0 3 高次方程式 119 **** (2)x+2x+3x²+5x-1をx²+x+1で割ったときの余りを求めよ. 考え方 (1) a+bz=0 a=0 かつ b=0 の証明は背理法を利用する。 (2)方程式+x+1=0の解をするとは虚数でww+1=0.ω=1 で ある あわせて (1) の証明結果を利用して余りを求める。 (1)(i) a+bz=0a=0かつb=0を証明する b=0 と仮定すると, a+bz=0 より z=- a ……………① となる. b だから ここで,a,bは実数より も実数 とは よって, a=0 | 2004 3×668 ω=1 が利用でき るように変形する 通分する a+bz=0 q=0 かつ b=0 以上より, a=0 かつ b=0 このようなときは なっ 実数 (9)9 与式に代入できるよ うな2種類の変形を 行う. しかし、2は虚数であるから、①の成立には矛盾がある。 b=0 b=0 を a+bz=0 に代入すると したがって, a, b が実数, z が虚数のとき. よくいくとは限らな a+bz=0は明らかに成り立つ が虚数のとき a+bz=0a=0 / b=0= (2)x+2x3+3x²+5x-1 を2次式x'+x+1で割ったときの商をQ(x),余り 1次以下の多項式mx+n(m,nは実数) とすると,(土)1 x+2x'+3x²+5x-1 = (x2+x+1)Q(x)+mx+n .....① 方程式 x'+x+1=0の解をωとすると, ω は虚数で。。 ω'+w+1=0である。 ①の両辺にx=w を代入すると, +2ω°+3ω°+5ω-1=(ω^+w+1)Q(ω)+mw+n ここでω-1=(ω-1) (ω'+ω+1)=0 より また, =1 e=e=e④しいにきたから、今はどの ω'+w+1=0 より ω=-ω-1 ...... ⑤ ずは (w+1)24-1 考える. -1は奇数より 2-1-1 を使えるよう よって、②は,③~⑤より, - を分ける. で整理すると, (n+2)+(m-3)w=0 17+18 とする. 練習 2 3 第2章 w+2×1+3(-w-1)+5w-1=mw+n ここで,m,nは実数であるから, n+2m-3も実数, また, は虚数 したがって,(1)の結果から, n+2=0,m-3=0 つまり、 m=3.n=-2 報によって、 求める余りは, 3x-2 (1)x100-1 を x'+x+1で割ったときの余りを求めよ. 56 (2)x+ax+bx+cx-1で割り切れるとき,実数a,b,c の値を求めよ. *****

解決済み 回答数: 1
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

解決済み 回答数: 1
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

回答募集中 回答数: 0
数学 高校生

二次関数についての質問です。⑸で何故D>0の条件が書かれていないのか分かりません。⑶で不必要な理由はわかりますが、何故⑸でも不必要なのでしょうか?

104 第2章 高次方程式 Think 例題 48 2次方程式の解の存在範囲 **** 大阪届いての2次方程式」がどのような異なる2つ (3) 異符号(1つが正で,他が負) の実数解をもつとき、定数りの値の範囲を求めよ。ただし、わは実数とする。 (1) ともに正 (2)ともに (4) ともに1より大きい (5) 1つは1より大きく、他は1より小さい 考え方 2次方程式の異なる2つの実数解 α β について, (1)α,βがともに正⇔D>0, α+3>0.3>0 (2)α,βがともに負⇔D>0.α+β<0,aβ>0 ⇒ aβ<0 α β 符号 (3) (4) α. βがともに1より大きい⇔D>0 (α-1)+(β-1)>0, (α-1) (3-1)>0 (5) αβのうち、1つは1より大きく, 他は1より小さい 解答 x-2px+p+6=0の解を α β とする. α+β=2p, aβ=p+6 解と係数の関係より [[]] A (1) 2次方程式 x 2px+p+6=0 の判別式をDとす ると,α. β は異なる2つの実数解であるから,D>0 である. p²-(p+6)=p²-p−6=(p+2)(p−3) D 4 (p+2)(3)>0より (a−1)(8-1)<0 α β は実数 a+ß>0, aß>0€ Focus より (a- (a よって 3 a. B (5) さいとき ( よって 2次方 25555 8 a, α, a, p<-2, 3<p......① あっても,α,βが実数 とならない場合(たとえ ば a=1+i, ß=1-i) があるので,D>0の条 件が必要である. a. α+β=2p>0より, >0 ② 注〉x2-2px y=x'+ aβ = p+6>0 より よって ① ② ③より, p>3 p>-6 ③ ③ (2 ① -6 -2 0 このこ 実数解 (1) α. βがともに正より,α+β>0,αB>0 3 p (2) α β は異なる2つの実数解であるから, (1) より p<-23<p ......① α βがともに負より, α+B<0.a>0 α+β=2p<0 より, 38 aẞ=p+6>0. p<0 ・・・・・・② p-6.......③ LD S よって, ① ② ③より, -6<p<-2 ③ ② +d ① -6 -20 3 p (3) αβは異符号だから. aB<0 p<-6 よって, p<-6 aβ=p+6<0 より (4)α,βは異なる2つの実数解であるから (1) より p<-2,3<p ...① αβがともに1より大きいから (-1)+(-1)>0(α-1)(3-1)>0 2-(a+β)x+αβ=0 の解は α,βで,この判 別式をDとすると aβ< 0 ならば D=(a+β)2-4a>0 となるためD>0 の条 件は必要ない。 また、 ない. βの符号は定まら (4) (00)0-320- 煉4 練習 xo ∞* *** 48 (1)

解決済み 回答数: 1