学年

教科

質問の種類

数学 高校生

一番のx=って点ABの座標だと思うんですけど、2番で①が実数になるからと言っている意味がよく分かりません、交点をとるからという意味ですか?

●7 斜めの回転体 1 曲線 y=- IC >0) をCとする。 直線 y=x上の点Pにおいて直線y=xに直交する直線を考 える. この直線と曲線Cは2点 A, B で交わっているとする (2) 曲線と直線x+y=4で囲まれた部分を直線y=xの周りに1回転してできる回転体の体 (1) Oを原点(0,0)とし, OP=1とするとき, 線分AP の長さを†で表せ。 積を求めよ. 回転軸上に変数をとる 回転軸が斜めになっている場合であっても,回転 軸上に変数(目盛り)をとれば、座標軸が回転軸の場合と同様,体積を S's (1) dt で計算することができる。 ここで, S(t)は右図太線での回転体の 断面積である. 回転軸上に変数をとるとは,「回転軸上の定点(例題ではO) からの距離を変数で表す」ということで、例題ではこのような設定になって いるので難しく考える必要がない。 演習題のように変数をとる場合は注意が必 (演習題の解答のあとで解説する) 解答量 (1)Pは第1象限にあるので, OP=t のときP (津田塾大学) t t=b t=a 回転体の断面積S(t) t √2 このときにx+y=√2tだから,C:xy=1と連立し て」を消去すると, C (√2t-x)=1 :.x2-√2tx+1=0 x= √2t±√2t2-4 2 複号のマイナスの方をAとして t AP=√2 √2 √21-√2(12-2) 2 =√t-2 P t x+y=4 B XC V2 P (2) ①が実数になるので 212-40 すなわち√2 であり,また, 1:x+y=√2tx+y=4と一致するとき, t=2√2 である. よって, 求める体積 V は, 2√2 v=f2x· AP²dt= V= 2/2 ·AP²dt=√(t²-2) dt=r -13-2t 2√2 Cは直線 y=x に関して対称だ らPはABの中点になる. ={16/2-4√2- 2 √2-2√2 2 π

回答募集中 回答数: 0
数学 高校生

こちら東京海洋大学の過去問(小論文2)です。問2、3の解き方を教えて頂きたいです。 ※解答なし

I あみくち ある海域の平らな海底上で,網口 (網の開口部) の横幅 12m の網 ひ が,一定の方向に1.2m/秒の速さで水平に曳かれている。 いま,ある 魚が網口中央の前方 (右下図の点A) で静止していたところ、 右下図 のように網が3mの距離まで近づいた時に網の存在に気付き、網から 逃れようとして遊泳を開始したとする。 魚は逃げるときに常に一定の 方向かつ一定の速度で海底面上を水平方向に遊泳し, 十分に長い時間 を遊泳し続けることができるものとする。 なお、一度網口より網の内 側に入った魚は必ず漁獲されるものとする。 また,ここでは魚の大き さは考えないものとする。 このとき, 次の問1から問3に答えなさ い。 なお, √2 =1.4, V3 =1.7 とし, いずれも解答の過程を併せて示しな さい。 12m 網口 網を曳く方向 網口から中に入ると漁獲される。 網の下や上からの逃避は考えない。 網を曳く 方向 問1 魚が網の存在に気付き, 網を曳く方向に対して垂直な方向(90°) に遊泳した。 魚が網から逃れるのに必要な遊泳速度 (m/秒) を求め なさい。 網を曳く速さ II 1.2m/秒 問2 魚が網の存在に気付き, 網を曳く方向に対して 45°の方向に遊泳 した。 魚が網から逃れるのに必要な遊泳速度 (m/秒) を求めなさい。 問3 魚が網の存在に気付き, 網を曳く方向に対して 30°の方向に 1.5 (m/秒) の速度で遊泳した。 この魚を漁獲することができる最小の えいもう 曳網速度 (網を曳く速度 (m/秒)) を求めなさい。 6m A 3m 6m (網を上から見た図)

回答募集中 回答数: 0
数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0