学年

教科

質問の種類

数学 高校生

この問題の2枚目の式の解き方が分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

-88 (106) 第1章 数列 例題 B1.52n=k-1, k を仮定する数学的帰納法 **** x=t+1 とし,P,=1+ t" 1 とおく (n=1,2,・・・・・). このとき, P は x 考え方 解答 t 次の多項式で表されることを示せ. 自然数nに関する証明については, 数学的帰納法を用いる. まずはオーソドックスに 考えてみよう. (証明) (1) n=1 のとき,P,=t+1=x より成り立つ. (I)n=k のとき,Px=+==(xk次の多項式)と仮定すると, 1 n=k+1 のとき, Pato=t+1+- (+)-(++) (+)- =xPk-Pk-1 ここで,Px=(xk次の多項式) と仮定しているから,xPはxの(k+1)次の多項式で ある.しかし,P-」については,何次式なのか、xの多項式なのかもわからないつまり、 P& だけではなく、Pa」の次数についても仮定が必要になる.また,(II)で, n=k-1 とすると, n=1, 2,......であるから,k-1≧1 より k≧2 でなければならない。 wwwwwwwwwwwwww m (I) n=1 のとき,P,=t+==xより成り立つ. n=2のとき,P2=f+ 2=x2 より題意は成り立つ. (II)n=k-1,k(k≧2) について, 題意が成り立つと仮定する. IPkxの次の多項式 「Pk-1 は xの(k-1) 次の多項式 すなわち, で表されると仮定すると, Pati=tk+1+- tk-1. tk-1 =xPk-Pk-1 ここで, xPk は x×(xk次の多項式)より, xの (k+1) 次の多項式となり,P-1 は xの(k-1)| 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. Ph-1 は xの (k-1) 次の多 式より, Pk+1 よって, n=k+1 のときも題意は成り立つ. (I) (II)より, すべての自然数nについて題意は成り =(x (k+1) 次の多項式 (x (k-1)次の多項 立つ 注》(I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法で, P2が 2次の多項式であることを示そうとすると, Po, P, が必要となり困る. (Poは定 れていない.)よって, (I)でP2 も調べておく必要がある. なお、下の練習 B1.52は, フィボナッチ数列の一般項に関する問題である. (p.B1-74 52 自然数とするとき.4.1/5(1+2)-1/5(25) は整数である

解決済み 回答数: 1
数学 高校生

この問題の2枚目の式のところの7m+7の7の部分はどこに行ったのでしょうか?誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

36 (104) 第1章 数 列 例題 B1.50 数学的帰納法 (3) 命題の証明 **** ”を2以上の自然数とするとき、パー"が7の倍数であることを数字を 帰納法によって証明せよ. 考え方 n-nが7の倍数 n-n=7×(整数) となる.このことを数学的帰納法を使って証明する. 解答) nin.......① とおく. (I) n=2 のとき, n-n=27-2 =126=7・18 よって, n=2のとき ① は7の倍数である. (II)(2)のとき ①が7の倍数であると仮定す ると, k-k=7m(m は整数) とおける. (日本女子大) 例 2以上の なので、最初の 2である. 考 このとき, n=k+1 のときの (k+1)-(k+1)が7 の倍数であることを示す. (k+1)^-(k+1) =k+Ck+C2k+7C3k+7C4k³+7C5k²+7C6k +1 -(k+1) (k+1)^(k+1) =7X (整数) となることを示 k-kは仮定より 7の倍数, =k+7k+21k+35k+35k+21k2+7k-k =(k-k)+7(k+3k + 5k+5k+3k+k) =7m+7(k+3k+5k+5k+3k+k) =7(m+k+3k+5k+5k+3k+k) ここで,m+k+3k+5k+5k+3k+k は整数なの で, (k+1)-(+1) は7の倍数である. 7(k+......)も 7の倍数 したがって, n=k+1 のときも①は7の倍数である. (I),(II)より,2以上のすべての自然数nについて ① は 7 の倍数である. Focus 自然数nに関する証明に数学的帰納法は有効である 注》整数αの倍数は,n (整数) を用いてan と表せる。 「αで割り切れる」 「α を約数にもつ」 「an と表せる」 となる. すべての自然数nについて, 22+6n-1 で割り切れることを証明せよ。

解決済み 回答数: 1
数学 高校生

この問題のここの式変換が分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

= 六 - (n-1) ]覚える 覚える!! 3 漸化式と数学的帰納法 (103) B 例題 B1.49 数学的帰納法 (2) 不等式の証明 . **** nが2以上の自然数のとき, 1+ 1 + 22 1 32 1 ++ <2- が成り立 n° n つことを数学的帰納法で証明せよ。 考え方 2以上の自然数について成り立つことを示すので、次のことを証明すればよい. (I) n=2 のとき, 不等式が成り立つことを示す. (II)=k(k≧2) のとき, 不等式が成り立つと仮定し、これを用いて,n=k+1 のと きも成り立つことを示す. 解答) 1+ 1 1 + + + <2- 22 32 1 1 ..... ① とおく。 n" n (I) n=2 のとき, 1 5 (左辺)=1+- 13 (右辺) =2- 22 4' 22 より, (左辺) く (右辺) となり, n=2のとき①は成り立つ. (II)n=k(k≧2) のとき, ①が成り立つと仮定すると, んは2以上の自然数 1 1 1+ + 22 32 n=k+1 のとき, 1+2+3 ・十 <2- k² (*) k 1 1 1 1 1 + ・+ <2 何を示すかを明記 k² (k+1)2 k+1. する. が成り立つことを示す. (右辺) (左辺) 1 1 1 =2- 1+ + (右辺) (左辺) > 0 を示せばよい. k+1 22 32 (k+1)2 1 >2- 2- + k+1 k (k+1)2 (*) の仮定を利用す るが,不等号の向き に注意する. 1 0 k(k+1)2- したがって, (右辺) (左辺) > 0 となり, n=k+1 の 書くならば, ->-> ときも①は成り立つ. (I) (II)より,2以上のすべての自然数nについて①は成り は2以上の自然数 だから, k(k+1)"> 1 立つ. よって, k(k+1)'' ocus 数学的帰納法の証明 一 何が仮定で(スタート), 何を示すべきか (ゴール) を明確に 注>> 例題 B1.49 や練習 B1.49 のように, n=1 から始まらず, 最初の数が n=2 や n= などとなる場合もある. 聞 (1) h>0 でnが2以上の自然数のとき, (1+h)">1+nh を証明せよ。 (東北学院 4以上の自然粉のとき 2"" を証明せよ。 p. B1-89

解決済み 回答数: 1