学年

教科

質問の種類

数学 高校生

例題73 解説で、矢印の行の意味がわからないので教えていただきたいです!

x=2y+1 去するか ET 例 73 2変数関数の最大最小 を実数とするとき、x-4.xy+y²-4y+3 の最小値を求め、そのときの の値を求めよ。 基本 59 SHART & SOLUTION 題のようなxとyの間の関係式(条件式という)がないから、この例題のxとyは互 に関係なくすべての実数値をとる変数である。 難しく考えず、まず、yを定数と考えて、 式をxの2次関数とみる。 そして 基本形 α(xp)+αに変形する。 2次式)も そして、更に残った定数項( 基本形 b(y-r)+s に変形する。 ここで、 次の関係を利用する。 実数X, Yについて X 20 Y 20 であるから、 aX2+by+h (α> 0, b>0は定数) は X=Y=0 で最小値 をとる。 x2-4xy+7y²-4y+3 ={(x-2y)-(2y)^}+7y²-4y+3 =(x-2y)2+3y²-4y+3 =(x-2y)+3y-)-(号)}+3 =(x-2y)² +3(x-3)² + x, y は実数であるから (x-2y)² ≥0, (y-2) 20 したがって, x-2y=0, y- = 0 すなわち x=1/13. y=1/23 で最小値をとる。 (実数) 20 yを定数と考え、xにつ いて平方完成。 xを定数と考えて 平方完成すると次のように なるが、 結果は同じ。 7y³-4(x+1)y+x²+3 2x =7{y_²(x+1)}² 4(x+1)^ - 4(x + 1)²+x²+3 7 -12 (7y-2(x+1))2 POINT 2変数x,yの関数の最小値 α(x,yの式)+b(yの式)+k a,b,c,d,e, kを定数として a(x+cy+d)²+b(y+e)²+k (a>0, b>0) と変形できるなら, x+ey+d=0,y+e=0 で最小値kをとる。 PRACTICE 73° x,yを実数とする。 6x2+6xy+3y²-6x-4y+3 の最小値とそのときのx,yの値を [類 北星学園大 ] 求めよ。 00 2次関数の最大・最小と決定

回答募集中 回答数: 0
数学 高校生

(2)の場合分けが分からないです。 どう考えればこのように場合分け出来ますかね?

重要 例題100 杷) 次の関数のグラフをかき, その値域を求めよ。範囲に異なる②つの実数 CLOFETAO (1) y=2x-6 (1≤x≤4) CHART & SOLUTION 絶対値 場合に分ける A≧0 のとき A=A, A<0 のとき | 4|=-A 絶対値のついた関数のグラフをかくには,まず,||内の式=0 となるような変数 場合を分けて|をはずす。 1.03 (1) 2x-6=0 すなわち x=3が場合の分かれ目であるから,x≧3,x<3で場合分けて (2) x=0 と x-1=0 から x=0 と x=1 が場合の分かれ目。x<0, 0≦x<1, 1≦x ( つの場合に分ける。 解答 (1) 2x-6≧0 すなわち xのとき y=2x-6の軸は直線 2x-6<0 すなわち x<3のとき y=-(2x-6)=-2x+6 (2) x<0 のとき -------- (2) y=\x|+|x-1| 27 S<x cs 1. 34 £¬7, y=|2x−6) (1≤x≤4) 2 のグラフは 右の図の実線部分で - 01 ある。 したがって、値域は 0≤y≤4 x≧1 のとき [3] y=x+(x-1)=2x-1 > 0 から よって, y=|x|+|x-1 のグラフ は右の図の実線部分である。 したがって、値域は y≥1 .83 め の 最大 わいわ O y=-x-(x-1)=-2x+1 0≦x<1のとき Cado TO 100 JA y=-f(x) y=x−(x−1)=1&$$4015 ($) {/F 1 x /1 \/I 基本 y= x=1のとき x=3のときy x=4 のときy info (1) のような y=f(x) | のグラフ f(x)≧0のときy= f(x)<0 のときy= であるから, y=f( ラフでx軸より下 分をx軸に関して対 返したものにな y=f( £>*> [!] 0<(S) &&0>(1) 折 す f(x)<0 2>(p) (2) のように複数の く場合や PRACT (4) のように、 右辺 に|がつく場合 の方法は適用でき

回答募集中 回答数: 0
数学 高校生

下線部の不等式なのですが、なぜ2Xよりも30の方が大きくなるのかが分かりません。2Xが30よりも大きくなることないのでしょうか。

次不定方程式の自然数解 基本例題 等式2x+3y=33 を満たす自然数x,yの組は 組ある。 それらのうち xが2桁で最小である組は (x,y)=(1, である。 [福岡工大] CHART SOLUTION 方程式の自然数解 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ...... ② ① において, y ≧1 であるから 11-y≦10 不等式で範囲を絞り込む ・・・・・・① 「x,yが自然数」すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利 使用して, 最初からx,yの値の範囲を絞り込むとよい。 基本例題 122 と同様にして方程式 2x+3y=33 の整数解を求めた後で, 「別解 yが自然数になるように絞り込んでもよい。 って 2x≦3.10=30 更に, x≧1 であるから 1≤x≤15 ..... ③ ②③から x = 3, 6, 9,12,15 ゆえに、等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解 x=0, y=11は, 2x+3y=33 であるから ①-②から すなわち 2.0+3・11=33 2x+3(y-11)=0 2x=-3(y-11) ア5組 (x, y)=(¹12, 3) ① の整数解の1つ ‥. ② 基本 122 2と3は互いに素であるから, ① のすべての整数解は x=3k,y=-2k+11 (kは整数) 重要 125 11-yは2の倍数 からyは奇数。 から絞り込んでも an それぞれのxに対 は自然数になる ■2x=33-3y =3(11-y) と変形してもよ

回答募集中 回答数: 0
数学 高校生

下線部の不等式なのですが、なぜ2Xよりも30の方が大きくなるのかが分かりません。2Xが30よりも大きくなることないのでしょうか。

次不定方程式の自然数解 基本例題 等式2x+3y=33 を満たす自然数x,yの組は 組ある。 それらのうち xが2桁で最小である組は (x,y)=(1, である。 [福岡工大] CHART SOLUTION 方程式の自然数解 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ...... ② ① において, y ≧1 であるから 11-y≦10 不等式で範囲を絞り込む ・・・・・・① 「x,yが自然数」すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利 使用して, 最初からx,yの値の範囲を絞り込むとよい。 基本例題 122 と同様にして方程式 2x+3y=33 の整数解を求めた後で, 「別解 yが自然数になるように絞り込んでもよい。 って 2x≦3.10=30 更に, x≧1 であるから 1≤x≤15 ..... ③ ②③から x = 3, 6, 9,12,15 ゆえに、等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解 x=0, y=11は, 2x+3y=33 であるから ①-②から すなわち 2.0+3・11=33 2x+3(y-11)=0 2x=-3(y-11) ア5組 (x, y)=(¹12, 3) ① の整数解の1つ ‥. ② 基本 122 2と3は互いに素であるから, ① のすべての整数解は x=3k,y=-2k+11 (kは整数) 重要 125 11-yは2の倍数 からyは奇数。 から絞り込んでも an それぞれのxに対 は自然数になる ■2x=33-3y =3(11-y) と変形してもよ

回答募集中 回答数: 0
数学 高校生

どう考えて解くのか分からないので教えて欲しいです あと、蛍光ペンで書いてる内容も理解出来てないので教えて欲しいです

00000 重要 例題 52 2次方程式の整数解 [類名城大 ] に関する2次方程式x(m-7)x+m=0 の解がともに正の整数である とき,の値とそのときの解を求めよ。 数学A基本 106, p.70 基本事項 CHART SOLUTION 方程式の整数解 (整数)x (整数)=(整数)の形にもち込む ····· 2つの正の整数解をα, β とすると, 解と係数の関係から a+B=m-7, aß=m この2式からm を消去し, (αの1次式) (βの1次式) = (整数)の形にする。 解答 2次方程式x^2-(-7)x+m=0 の2つの解をα,β ( α≦β) とすると, 解と係数の関係により a+B=m-7, aß=m m を消去すると a+B=aß-7 よって aβ-α-β=7 ゆえに (α−1)(B-1)-1=7 よって (n-1) (B-1)=8...... ① α, β は正の整数であり, α≦B であるから 0≤a-1≤B-1 よって, ① から (a−1, ß-1)=(1, 8), (2, 4) すなわち (a, B)=(2, 9), (3, 5) m=aβ であるから (α,β)=(2,9) すなわち m=18 のとき x=2,9 (α,β)=(3,5) すなわち m=15 のとき x=3,5 inf 方程式を変形すると m(x-1)=x2+7x xが正の整数ならば右辺が 正。 ゆえに x=1である。 解答にあるとおり, aβ=mであるからも 正の整数である。 よって, m= から 8 x-1 したがって _x2+7x x-1 =x+8+ このとき 8 x-1 も正の整数。 x-1=1, 2, 4,8から x=2, 3, 5, 9 の値は順に m=18,15,15,18 となるから m=15,18 INFORMATION 不等式で範囲を絞り込む方法 係数が整数なら「整数解ならば実数解であるから 判別式 D≧0 (必要条件)」 によっ て,係数の整数値を求め,その中から整数解をもつものを絞り込んでいく方法がある。 (p.69 EXERCISES 35 (2) 参照) この例題では, 解と係数の関係からは整数であることがわかるが、判別式 D={-(m-7)}2-4m=m²-18m+49≧0からでは絞り込めない。

回答募集中 回答数: 0
数学 高校生

写真の赤線のところなのですがなぜこのように必ず書かなければならないのか教えてください。

378 基 本 例題 29 交点の位置ベクトル (1) * 800000 する点をDとする。 線分 AD と線分BCの交点をPとし, 直線 OP と辺AB △OAB において, 辺OAを1:2に内分する点を C, 辺OBを2:1に内分 の交点をQとする。 OA= a, OB=1 とするとき,次のベクトルをa,bを 用いて表せ。 (1) OP (2) OQ CHARTO SOLUTION |p.337 基本事項 3, p.370 基本事項 1 交点の位置ベクトル 2通りに表し 係数比較 (1) AP:PD=s: (1-s), BP: PC=t: (1-t) として,点Pを 線分 AD における内分点, 線分BCにおける内分点 解答 (1) AP:PD=s: (1-s), BP:PC=t: (1-t) とすると OP=(1-s)OA+sOD=(1-s)a+1/23st 1 OP=(1-10B+10C=//ta+(1-1).... ② の2通りにとらえ, OPを2通りに表す。 (2) 点Qは直線 OP 上にあるから, OQ=kOP(kは実数)と表される。 (1) と同 様に,点Qを 線分 AB における内分点,直線 OP 上の点の2通りにとらえ, OQを2通りに表す。 ①,②から (1—s)ã+sb=tã+(1—t)b !à±0, 6±0, axb chp5_1-s=- 6 これを解くと s = 77, t=327 ゆえに OP= 1/27/12/26 一方 7' 7 OQ=k ...... =1-t¼ (2) AQ:QB=u: (1-u) とすると OQ=(1-u)a+ub また,点Qは直線 OP 上にあるから, OQ=kOP (kは実数) とすると,(1) より ON=(1/2+1/6=1/2+1/1 k á b ) ==—7 kā kb *₂ (1-u)a+ub=-=— kā + 1/4 kb よって a=0.6=0. a であるから 1-u=k, u=- k 4 これを解くと k = 1/23,u=1/13 ゆえに OQ= U 5 A 2 基本 36,57 -u B -1- 注意 左の解答の赤破 の断りを必ず明記する。 inf. メネラウスの定 チェバの定理を用いた は, p.380 の 補足 参照 また, ベクトル方程式 いる解法は次節で扱う 本例題 36 の inf. 参照 0Q=a+b PRACTICE・・・・ 29 ② △OAB において, 辺OA を 2:3 に内分する点をC. 辺OF 4:5に内分する点をD

回答募集中 回答数: 0