学年

教科

質問の種類

数学 高校生

この問題で、OA:AD=A+B: Cとなるのはなぜでしょうか。

68 00000 重要 例題 36 三角形の内心を表す複素数 異なる3点O(0),A(α), B(β) を頂点とする △OAB の内心をP(z) とする。 このときは次の等式を満たすことを示せ。 BRONEO A ゆえに よって 指針> 三角形の内心は,3つの内角の二等分線の交点である。 AD: DB = OA: OB=α: 6 解答 OA=|α|=a, OB=||= b, AB=|β-α|=c とおく。 また,∠AOB の二等分線と辺ABの 交点をD(w) とする。 すなわち 次の 「角の二等分線の定理」 (*)を利用し, ZOの二等分 線と辺AB の交点をD(w) として,wをα, β で表す。 (*) 右の図で OD が △OAB の ∠0 の二等分線 ⇒ AD: DB = OA: OB EO A 40.1 次に,OAD において,∠Aと二等分線 AP に注目する。 以上のことは,内心の位置ベクトルを求めるときの考え方とまったく同じである。 「改訂版 チャート式基礎からの数学ⅡI + B 」 p.422 参照。 ba+aß であるから a+b Pは∠OAB の二等分線とOD の交点であるから W= 2= タミ a+b a+b+c W= Bla+lalß R$ |a|+|B|+|B-α| ...... 検討 △ABCの内ふた土 OP:PD=OA: AD=α: (a+bc) = (a + b) : c OP: OD=(a+b): (a+b+c) a+b+c |Bla+\a\B |a|+|B|+|β-al A(a) ・a a+b bata a+b a = P(z) b D(w) bB(B) ROBADA (5) bataß O 絶対値が付いたままでは扱 いにくいので, a,b,c と SALL おいた。 SKOLAGD 角の二等分線の定理。 B これより,Pは線分 OD を (a+b):cに内分する点で あるから c.0+(a+b)w a+b+cz=a+b+c としてもよい。

回答募集中 回答数: 0
数学 高校生

青チャートのAです かっこ1で証明に使わない角についてわざわz言及しているのはなぜですか

87 基本例題 接弦定理の逆の利用 00000 10の外部に接線 PA, PB を引く。 点Bを通り, PAと平行 SCOUT な直線が円0と再び交わる点をCとする。 <PAB=a とするとき, ∠BACをaを用いて表せ。 直線 AC は △PAB の外接円の接線であることを証明せよ。 指針 (1) 円の外部の1点からその円に引いた2本の接線の長さは等しいことや, 接弦定理, 平行線の同位角・錯角に注目して,∠PAB に等しい角をいくつか見つける。 (2) 接線であることの証明に、次の接弦定理の逆を利用する。 0,348 TERA 円 0 の弧 AB と半直線 AT が直線 AB に関して同じ側にあって ∠ACB=∠BAT ならば,直線ATは点Aで円0に接する (1) の結果を利用して,∠APB=∠BAC を示す。 解答 (1) PA=PBであるから ∠PAB=∠PBA=a また, PA//BC であるから ∠ABC=∠PAB=α 更に ∠ACB=∠PAB=α よって, △ABCにおいて ∠BAC=180°−2a ...... P おいて、円の CHART》 接線であることの証明 接弦定理の逆が有効 (19) A B89 使わない DETERA ∠APB=180°-2a 0円 13 p.436 基本事項 ② ...... A HA3 | 接線の長さの相等。 a NGAPDATA C onit SA SEN 09:A ART SI (2) AAPBにおいて 1⑩② から ∠APB=∠BAC THIAPATIA したがって,直線 AC は △PAB の外接円の接線である。 A4 接弦定理の逆 B 439 T > 平行線の錯角は等しい 接弦定理 PROL PA- とし、その手をとすると、名は てみよし、これから △PAB は二等辺三角形。 79-84-A4 A 章 144 円と直線、2つの円の位置関係 <DO & FR>

回答募集中 回答数: 0
数学 高校生

ハヒフヘを教えていただきたいです。 よろしくお願いします。

[2] 以下の問題を解答するにあたっては、 必要に応じて 42, 43ページの常用対数 表を用いてもよい。 この表には, 1.00 から 9.99 までの常用対数の値が, 小数第 5位を四捨五入して小数第4位まで示されている。 (1) N = 66420 として, Nのおよその値と桁数を求めよう。 N=(6.64×102) 20 であるから, Nの常用対数を計算すると _log10N=10g10 (6.64×10²) 20 20/ log10 6.64 + (0y13 (0²) である。 数 6.5 6.6 6.7 6.8 6.9 20 1 ツテ 10g10 6.64 + 20 2 .8129 .8136 .8142 3 (4 81058202,8209825 .8267 .8274 .8261 .8331 .8325 .8338 8388 ,8395 .8401 ヌ+10g10 .8149 .8156 837 .8280 .8287 .8351 .8344 .8414 .8407 トナ 40 5 40 ノ であるから, 10g 10 N のおよその値は 56 2,78 s 6 .8162 .8169 .8235 .8228 .8293 .8299 .8370 _8363 .8357 .8420 .8426 .8432 となる。 したがって,Nはおよそ (0)=2208-F 2.78 [×10 ニヌ] である。 また,Nはハヒ桁の自然数である。 201g106.64 +40 8 さらに, 上図のように常用対数表を用いると, 10g 10 6.64 の値はおよそ 56 ことが 0.8222 であることがわかるので, 10g 10 N の整数部分はニヌであり, 小数 部分はおよそ ネである。ただし, 実数x に対し、 不等式 n≦x<n+1 を満たす整数n を 「xの整数部分」 といい, x-n を 「xの小数部分」とい となる実数αの値はおよそ 20,444 う。 再び常用対数表より, 10g104= 478⑤5 ネ 9 .8176 .8182 .8189 8241 .8248 .8254 .8312 .8306 .8319 8376 .8382 ,8439 .8445 20×0.8322 +40 16.44% +40 = 56.444 (数学ⅡⅠ・数学B 第1問は次ページに続く。) ツテハヒに当てはまる数を求めよ。 ただし, ネ につ いては, 当てはまる最も適当なものを、次の⑩〜⑦のうちから一つずつ選べ。 ⑩ 0.222 ④ 1.66 ① 0.444 ⑤ 2.78 ET 10日とたい ② 0.6444 ⑥ 4.41 ある会社では、銀行から3500万円を借りた(これを「釜」という)。この 元金には1年ごとに複利で3%の利子が加算されるとする (例えば、2年後には 元金と利子の合計が、 元金の1.032 倍となる)。 このとき, 10年後 ( 10 回利子 が加算された直後) の元金と利子の合計を有効数字2桁で求めよ。 およそ TO APD に選ん将来 The conce**** Konuşe 第2回 ③ 0.8222 ⑦ 6.64 x10円 (数学ⅡⅠI・数学B 第1問は次ページに続く。) -41-

回答募集中 回答数: 0