学年

教科

質問の種類

数学 高校生

(1)の問題に関して、チャート&ソリューションの9行目、y=k上に(2n-2k+1)個の点があるとはどういうことですか?

90 重要 例題 102 格子点の1 次の連立不等式の表す領域に含まれる格子点 (x座標, y である点)の個数を求めよ。 ただし, nは自然数とする。 (1) r≥0, y≥0, x+2y=2n CHART OLUTION 格子点の個数 0000 座標がともに 整数 (2) x≥0, y≤n², y≥x² MOITUIO の 直線xk または y=k上の格子点を求め加える...... 「不等式の表す領域」は数学IIの第3章を参照。 基本的 (1) n=1のとき n=2のとき 具体的な数を代入してグラフをかき, 見通しを立ててみよう。 n=3のとき yA ya YA x+2y=2・3 x+2y=2.2. -3 x+2y=2・1 Yo -2€ 2 -16 -10 1 0 2 3 0 2 3 4 5 n=1のとき 1+3=4, n=2のとき 1+3+5=9, (1) 解 n=3のとき 1+3+5+7=16 一般の場合については,境界の直線の方程式 x+2y=2n から x=2n-2y ………,0)上には(2n-2k+1)個の格子点 よって、 直線 y=k (k=n, n-1, が並ぶから (2n-2k+1)において, k=0, 1, ..., nとおいたものの総和が 求める個数となる。 び直 (2 J (2) n=1のとき n=2のとき n=3のとき A y y=x21 -yA y=x2+ (I-YA y=x -9 0 n=1のとき n=2のとき x 0 (1−0+1)+(1-1+1)=3, -4+ -1 x (4−0+1)+(4−1+1)+(4−4+1)=10, (9-0+1)+(9-1+1)+(9-4+1)+(9-9+1)=26 n=3のとき 一般(n) の場合については,直線x=k (k=0,1,2, n-1, n) E nとおいたものの総和が求める個数となる。 また、次のような, 図形の対称性などを利用した別解も考えられる。 (1)個の格子点が並ぶから,(n+1)において,k=0, 1, (1)の別解 三角形上の格子点の個数を長方形上の個数の半分とみる。 このとき、対角線上の格子点の個数を考慮する。 01- (2)の別解 長方形上の格子点の個数から 領域外の個数を引いたものと考える。

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0
数学 高校生

解説お願いします

A-1 したか? 1/2(+1) を出していたのですが,それはわかりま セ: はい わかりました。 でも、それ以外にも導出する方法はある のですか? でも少し話をしましたが、一般的には、 (k+1)_k=ア 2+ウk+1... ① イ の恒等式を利用します。 具体的には、 ① 式に順に 1,2,3 を代入し, 以下のように縦にそろえて 加えてると X-14 -14 ア.13+ イ・12+ ウ・1+1 31-21 ア ・2+ イ -2 + ウ・2+1 ア ・33+ イ・32+ ウ.3 + 1 +1) ア + イ n2+1 • ウn+1 (n+1)-19 アイ k+ k + Σk+21 1 Jk-1 k-1 上式を 1 (n+1 イ =1 ア J=1 k- Je=1 割 整理し、右辺の計算をすると,2112m(n+1)" を弾くこと できますね。 k=1 上記のような方法で、 同じ項を消して和を導く問題はいろいろや りましたね。 例えばこんな問題も同じ方法で解けるのですよ。 1 1 (1) 数列{an) が an+1-ax=- を満たす 60 (+1)+3) ときの一般項を求めよ。 数列 [4.} の階差数列 by s+1-4. の一般項が与えられているね。 n≧2 のときにam=a1+2bk となることから,数列{an}の 一般項が求められるね。 k=1 1 1 = H (+1)+3) n+1 n+3 となるから, =2のとき, カ n + キ an + オ 60 (+1) +2) ク n2+ケn コ ① サ + 1X+2) であり,これは=1のときも成り立つから, 4, は①となるね。 では、追加です。 1 1 _ (2) 数列{a} = Ca4-0,- #³ c₁ = 60 を (+1)+3) 満たすときの一般項を求めよ。 問題 (1) と同じように, 数列{Cx) の階差数列を dw=Cw+1 - Cm と して,n≧2のときに + 2 となることから,一般項 k=1 が求められないかな。 1 1 1 +1+2) (n+1) (n+1) +2) と変形できるわ なるほど。それを利用して、数列 (c.)の一般項を求めてみよう。

回答募集中 回答数: 0