学年

教科

質問の種類

数学 高校生

66. BP:PC=AB:ACより BP:PC=AB:ADと言えるのは AC=ADだからですか??

) E 性質。 て方 始めよ 基本例題66 角の二等分線の定理の逆 △ABCの辺BC を AB AC に内分する点をPとする。 このとき, APは∠A の二等分線であることを証明せよ。 KORE & COCK 指針 p.402 基本事項 ② 定理1 (内角の二等分線の定理) の逆である。 題意を式で表すと BP:PC=AB:ACAPは∠Aの二等分線 ( ∠BAP=∠CAP) 線分の比に関する条件から,角が等しいことを示すには,平行線を利用するとよい。 ∠Aの二等分線⇒BP:PC=AB:AC の証明 (p.402 解説)にならい,まず, 辺BA のAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解∠Aの二等分線と辺BCの交点をDとして,2点P, Dが一致することを示す。 なお,このような証明方法を 同一法または一致法という。 3830 解答 △ABCにおいて、辺BAの延長上に点D をAC=AD となるようにとる。 BP: PC=AB:ACのとき, BP:PC=BA: AD から 25 AP // DC ゆえに ACAD から 12/48 ∠BAP=∠ADC 円 BPC ∠PAC=∠ACD ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが ① ∠ADC=∠ACD 注意 ②から BP:PC=AB:AC .... (1) を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の二等 分線の定理により D BETAGA AB:AC=BD: DC ・・・・・・ BP:PC=BD:DC ② 平行線と線分の比の性質の 逆 1390 38 p.402 基本事項 ② 平行線の同位角、錯角はそ れぞれ等しい。 △ACD は二等辺三角形。 031185A U AR DP C B HULA ICA RO よってPとDは辺BCを同じ比に内分するから一致する。 したがって APは∠Aの二等分線である。 中の p.402 基本事項 2② の定理 2 についても逆が成り立つ。 下の練習 66 でその証明に取り組 んでみよう。 GORITO BCの辺BC を AB: AC に外分する点をQとする。 このと 線であることを証明せよ。 405 章 三角形の辺の比、五心 3章 10

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
数学 高校生

105.2 記述これでも大丈夫ですか??

基本例題105 素因数分解に関する問題 (1) (2) V40 63n n n² 6'196' BAL. 解答 が有理数となるような最小の自然数nを求めよ。 **BaC18030 3 n³ "ST (2) がすべて自然数となるような最小の自然数nを求めよ。 4410 p.468 基本事項 ③ 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 (1) √A" (mは偶数) の形になれば, 根号をはずすことができるから, √の中の数を素因数分解しておくと,考えやすくなる。 n (2) 17/12 = (m は自然数) とおいて、 を考える 63n 40 DY n² n 23 196' 441 32.7m 3 7n (1) 2³.5 21 2.5 上 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) 2/1- = (m は自然数) とおくと nº 22.32m²32m² 2 3-m² = (3m)² ゆえに 196 22.72 +77 これが自然数となるのは m=7k(kは自然数)とおくと よって n=2.3m n³ 23.33.7°ki = 23・3・7k3 441 3².7² が自然数となる条件 BONGOTO が7の倍数のときであるから, ① n=2.3.7k 80/00000 これが自然数となるもので最小のものは, k=1のときである から ① に k=1 を代入して n=42 【検討 素因数分解の一意性 - |素因数分解については,次の 素因数分解の一意性も重要である。 この自然数nを求め 63=32・7,40=23・5 JMS 3 |素因数分解 3) 63 3) 21 7 63=32.7 12/12/25×2-5-7 -×2・5・7 212・5 - 12/27-12/12 (有理数) •7=. となる。 < ① より kが最小のとき, nも最小となる。 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では, 2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3.15"= 405 を満たす整数m,nの値を求めよ。 [解答 3.15"=3"(3.5)"=3m+n.5", 405=34・5であるから 3m+n.5"=345 よってm=3, n=1 部分を比較して m+n=4,n=1

回答募集中 回答数: 0