学年

教科

質問の種類

数学 高校生

math この3つの使い分け方が分かりません😭 いざテストになってごっちゃになるとどうやって見分ければいいのですか??

絶対値を含む方程式・不等式 (基本) 基本例題 34 次の方程式・不等式を解け。 (1) |2-x|=4 (2) |2x+1|=7 w HART & SOLUTION 絶対値を含むときは、 場合分けをして絶対値記号をはずすのが基本であるが, この例題の (1)~(4) の右辺はすべて正の定数であるから,次のことを利用して解く。 c>0 のとき 方程式 |x|=c を満たすxの値は x=±c 不等式 |x|<eを満たすxの値の範囲は -c<x<e 不等式 |x|>cを満たすxの値の範囲は x<-cc<x MERCOL TEN 解答 (1) |2-x|=|x-2 であるから |x-2|=4 1318 x-2=±4 x-2=4 または x-2=-4を北 SHPG よって すなわち したがって x=6, -2 (2) |2x+1|=7から 2x+1=±7 すなわち 2x+1=7 または したがって x=3, -4 (3) |x-2<4 から -4<x-2<4 各辺に2を加えて -2<x<6 (4) |x-2|>4 から したがって -|x-2|>4. (3) |x-2<4 (4) |x-2>4 x-2<-4,4<x-2 x<-2,6x x-2|=4 2x+1=-7 -2 Tomas |x-2|<4. A 2 Xa p.55 基本事項 ||||=|A| x-2|=4 x-2=X とおくと |X|=4 よってX=±4 (81₂20314468 INFORMATION |b-α|は数直線上の2点A(a), B(b) 間の距離ととらえることができるから(p.41 参 照), |x-2|は2点A(2), P(x) 間の距離を表す。 よって, 等式 |x-2|=4 と例題 (3), (4) の不等式を満たすxの値や範囲は, 次の図のように表すことができる。 1250 TER WAR A (2) からの距離が4 6 2x=6 または 2x=-8 x-2<±4 は誤り! x-2> ±4 は誤り! za & LES 4 A (2) からの距離 A (2) からの距離 が4より大より小よりオ -x-2>4- DAT A(2) からの距離 18-01

回答募集中 回答数: 0
数学 高校生

(3)のn大なりイコール2とありますがこれはなぜですか?

152 00000 重要 例題 95 漸化式と極限(はさみうち) [類 神戸大] 0<a<3, an+1=1+√1+an (n=1,2, 3, ......) によって定められる数列 {an} について,次の (1) (2) (3) を示せ。 (2) 3-an+1<. (1) 0<an<3 ART O SOLUTION 求めにくい極限 CHART はさみうちの原理を利用薫さら 漸化式を変形して, 一般項an をnの式で表すのは難しい。 各小問を次の方針で 考えてみよう。 (1) すべての自然数nについての成立を示すから, 数学的帰納法を利用。 0<a<3 を仮定する。 (2) 漸化式を用いて an+1 を an で表し, (1) の結果を利用する。 (3) (1), (2) で示した不等式を利用し, はさみうちの原理を使って, 数列 {3-an ..... の極限を求める。 ・・・・・!!! はさみうちの原理 すべての自然数nについて ann≦b のとき liman=limbn=α ならば limC=α →∞ 11-00 解答 (1) 0<a<3 ①とする。 [1] n=1のとき, 条件から0<a<3 が成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1 のとき <(3—an) 3-ax+1=3-(1+√1+ax)=2√1+ak ここで, 0<a<3 の仮定から 1 <1+an<4 ゆえに 1 <√1+a2 よって, 2-√1+αk >0 であるから 3-4k+1 0 すなわち k+1 <3 また,漸化式の形から明らかに 0<ak+1 (3) liman=3 ゆえに, 0 <ak+1 <3 となり, n=k+1 のときにも ① は成 り立つ。 [1], [2] から すべての自然数nに対して①が成り立つ。 ■3-an+1=3-(1+√1+an)=2√1+an (2−√1+an)(2+√1+an) _4-(1+an)_²1 2+√1+an 2+√1+an -(3-a) ( 141 基本事項 3 基本88 数学的帰納法で示す。 ◆n=k+1 のときも 0 < ak+1 <3 すなわち 0 < akt かつ ak+1 <3 が成り立つことを示す。 漸化式から。 分子を有理化。 3-An ここで(1)の結 2+√1+a, </ 3-an+1< <1/13(3-4) (2)の結果から、n=2のとき ② ③ から よって ここで, lim a<3-a<3(3-a-1<3) (3-2)+LE? 0<3-a₂ < (3) m (2) (3- 100 < (1) ²(3-as) がって n-1 liman=3 11-00 lim (3-an)=0 121-00 >3であるから (3-as) 72-00 2+√ltan (3-α) = 0 であるから a>b>0のとき 1 1</ -(3-On) 3 (3-0) 3-an-1 小さいから成り立つ</a 仮定すると, liman+1= α であることから, α=1+√1+α が成り立つ。 |これから,α-1=√1+α であり,この式の両辺を2乗して a²-3α=0 整理すると ゆえに,α(α-3)=0,α> 0 から, α=3であると予想でき る。これを.149のズームUPのようにグラフで確認して みると、 右の図のように極限値が3となることが確かめら </1/3 (3-an-²) はさみうちの原理 INFORMATION 複雑な漸化式で定められた数列の極限 /an+1=1+√1+an, 0<a<3 で定義される数列{an} について, lima =α であると 72-00 y 3 y=1+√1+x 21 153 10 a₁ y=x Az az 3 れる。 なお,この無理式で与えられた漸化式から一般項 α を求め, 直接 lima =3である ことを示すことは難しいので, lim (3-α)=0を示そうとして (2) の誘導の不等式が 与えられているのである。 2240 4章 10 数列の極限 PRACTICE・・・ 95 ④ u=a (0<a<1), an+1=-120'12/24%(n=1,2,3,..) によって定められる数 列{an} について,次の (1), (2) を示せ。 また, (3) を求めよ。 (1) 0<an<1 (2) r=a2のとき 1-ty≦r (1-an) (n=1, 2, 3, ......) と演習) [鳥取大) ヨチャート の紹介 本質を 全に定 に問 関大 参考書 題学信

回答募集中 回答数: 0