学年

教科

質問の種類

数学 高校生

高校生数II、円と直線です。 下の写真問題の(1)です。赤線の部分なんですが、どうしてこのような式になるのかがわかりません、、。 どなたか途中経過を含めて解説お願いします🙇

0000 の方程式を 基本 4x+5 たす 満たす 例 基本 例題 87 x2+y2+bx+my+n=0 の表す図形 143 00000 (1) 方程式 2+2+6x-8y+9=0 はどのような図形を表すか。 (2)方程式 x2+y2+2px+3py+13=0 が円を表すとき,定数」の値の範囲 を求めよ。 CHART & SOLUTION p.138 基本事項 1 myn=表す図形xyについて平方完成する (x+2・1/2x+(1/2)}+{s+2.3+)-(12)+(豊)として、 (x+1/2)+(x+1)=1 m 12+ m²-4n の形に変形。 4 m +40 のとき,中心(-/1/27) 半径 √2+m²-4m この円を表す。 2 3章 12 円 円と直線,2つの円 解答 (1) ゆえに (x2+6x+9)+(y2-8y+16)=9+16-9 (x+3)2+(y-4)2=16 よって, 中心(-3, 4), 半径4の円を表す。 ( 両辺に x, yの係数の半 分の2乗をそれぞれ加 01 える。 (1)(x+2px++{y+3py+(書)が+(-13 ) + { y²+3py + ( 3³ ³D)² } = p² + ( 3³ ³0)² – 直み 直接 いるか ゆえに 2 (x+p)²+(y+3³p)² = 13³ p²-13 この方程式が円を表すための条件は12-130 ax, yについて,それぞ れ平方完成する。 よって p²-4>0 ゆえに したがって p<-2,2<p (p+2)(p-2)>0 Job (s) INFORMATION x2+y2+bx+my+n= 0 の表す図形 方程式 x2+y2+bx+my+n=0が円を表さない場合もある。 例1 方程式 x2+y2+6x-8y+25=0 の表す図形 実数の性質 変形すると (x+3)2+(y-4)²=0 ←右辺が 0 これを満たす実数x, y は, x=-3, y=4 のみである。 A,Bが実数のとき A'+B2≧0 等号は A=B=0

解決済み 回答数: 1
数学 高校生

Pnが近づく点を求めたいのにXnの極限を求めているのがなぜだかわかりません。解説お願いします。

重要 例題 24 図形に関する漸化式と極限 R1 図のような1辺の長さαの正三角形ABCにおいて, 頂点 CA Aから辺BCに下ろした垂線の足を とする。 P, から辺 ABに下ろした垂線の足を Q1, Q1 から辺CAへの垂線の 足を R1, R1 から辺BCへの垂線の足をP2 とする。 このよ うな操作を繰り返すと, 辺BC上に点P1, P2, ......, Pn, h が定まる。このとき, Pn が近づいていく点を求めよ。 MOITLE B P1 P2 C 2章 基本 19. 数学 B 基本 36 3 CHART & SOLUTION 図形と極限 番目と (n+1) 番目の関係を調べて漸化式を作る ) BP=xm として, BP1 (すなわち X+1) を X で表す。 直角三角形の辺の比を利用して進 める。 3D 数列の極限 解答 である。 BP=xn とする。 すべての BQn=BP =1/2BP=1/2x ARn= AR,1/12AQ=1/2(4-1/2) CRn=CA-ARn=a- 1a -Xn 1 a -Xn, CPCR.-(+)-+ = = 2 2 = 4 8 3 BP+1=BC-CP+1-a-(+ 1/1 x n ) = 1 / a − 1/1 x n n+ -a 4 8 - x n X T F xn 0-2 A xn a 1 xnl + 2 4 xn] [2] [1xuiQm 2:0 B Xn JR P/P+1 a-(a) xn-ti 4 そのままでもOK. 1 13 2 2 ゆえに Xn+1= xn+ 変形すると Xn+1 =- 8 04 a Xn 3 よって、数列{ x /12/24}は初項 x 1/34, 2 -BR== a 3a a, a= 2 公比 E-1の等比数列であり Xn 8 3 n-1 ga 8 1/4+24 の解は α = 1/24 xn-a=(-1) ( x − a) xn- 3 = 2 n-1/ ゆえに xn= (12/12)(3)+3/31 よって - -a+ X1 n→∞ = ga したがって, Pnが近づいていく点は辺BC を2:1に内分する点である。 -a ma limx=2大 mil (S) 子点と

解決済み 回答数: 1