学年

教科

質問の種類

数学 高校生

高校生数学、直線です。 下の写真の、赤波線のところで、どうしてこのような式になるのかがわかりません。 途中経過も含めて解説してほしいです!!

136 重要 例題 83 垂線の長さの最小の方 放物線 y=x2 ① と直線 y=x-1 放物線 ①との距離が最小となる点の座標と,その距離の最小値を求めよ。 ・② がある。 直線 ② 上の点で、 00000 [類 中央大 ] p.121 基本事項 7 基本 72 CHART & SOLUTION 点(x1,y'ì) と直線 ax+by+c=0 の距離 ax+by+cl √a²+b² 放物線 ①上の点をP(t, t2) として、点Pと直線 ② の距離が最小となる の値を求める 解答 放物線 ①上の点をP(t, t2) とし, ① (2) Pから直線②に引いた垂線を |t-1-1|_|t-t+1| (t, f²) PH とすると PH= √12+(-1)2 √2 x 3 t -1, P = 3/2 + 8 3√2 よって、PHは t=1/2で最小値 をとる。 t=/1/2 のとき, P (12/1/1) であるから,直線PH の方程式は 11/12 (12/21) すなわち 4x+4y-30... ③ x 点は,直線②上の点でもあるから,その座標を求めると ② ③ を解いて x= 7 8' 1 y=- 8 したがって, 求める点の座標は (7 8' 8/ また,距離の最小値は 3√2 8 x1 から x-y-1=0 2次式は基本形に変形 t2- t+1 =(1/2)-(1/2)+1 =(-1/2)+14/0 よって, t-t+1>0 で あるから, 絶対値記号が そのままはずせる。 ←PH⊥直線 ② により, 直線PH の傾きは 1 ②③に代入して 4x+4(x-1)-3=0 よって8x=7 int 直線 ② に平行な直線 y=x+k が放物線 ①に接 するときの接点が(12/11) である。 Ex A 7

解決済み 回答数: 2