学年

教科

質問の種類

数学 高校生

高一数学Iの三角比の問題です。 解き方を教えてください!

9. 次の会話の空欄にあてはまる数を入れよ。ただし,43と44は、 それぞれ下の記号 (ア)~ (ウ)から選べ。 【知識・技能】 【思考・判断・表現】 【主体的な学習】 解答番号43~50 三角形の辺の長さの求め方について、先生と太一さん,千晴さんが話し合っています。 -- 先生: 教科書p.105 の例2や問3では,「2辺とその間の角の大きさ」がわかっている場合に、残りの辺の長さの求 め方を学習しました。 太一:はい、覚えています。 余弦定理に与えられた辺の長さや角度を代入して、残りの辺の長さを求めました。 先生:では, 「2辺とその間にはない1つの角の大きさ」がわかっている場合には,残りの辺の長さを求めることが できるでしょうか。 千晴: 私はできると思います。 教科書p.103 の例題1問2では,正弦定理を使って辺の長さを求めました。 先生:そうですね。 でも、そのときに与えられた条件は、 「1辺と2つの角の大きさでしたね。 次のような場合に, 同じように正弦定理を利用して辺の長さを求めることはできますか。 (問題) △ABCにおいて,a=7,b=8,4=60°であるとき,c を求めよ。 千晴 : うーん・・・・。 正弦定理を使うと, sinB の値は求まりますが,辺の長さを求める式は作れそうにありません。 先生:そうですね。 では, 余弦定理を使うとどうでしょうか。 千晴:余弦定理を使ってを求めるから,式「=43」を使うのかな。 でも, わかっているのは4の大きさだよね。 太一:じゃあ、4の大きさを利用できる式 「44」を使ってみたらどうかな。 先生:では, その式を使って解いてみてください。 途中で2次方程式が出てきますので、解き方を思い出しながら 考えてみましょう。 [解] 余弦定理により, 45=46+c²-2・46・ccos47° 43 この式を整理すると,48c+49=0 cについての2次方程式を解くと, (c-3) (c-50)=0 千晴:解けました。 の値は2つあるんですね。 太一:cが2つあるということは, 与えられた条件を満たす三角形は2通りあるということですか。 先生:その通りです。 実際に図をかいて確かめてみましょう。 (ア) 62+&-2bccosA (1) ²+a²-2cacosB 44 45 46 よって,c=3,50 47 48 () a²+b²-2abcosC 49 50

回答募集中 回答数: 0
数学 高校生

至急!解説の方お願い致します🙇🏻‍♀️🙏🏻

〔3〕 下図のような三角形 ABC と, その辺上を移動する 3点P,Q, R がある。 点Pは,点Aから点Bまで毎秒1の速さで移動する。 点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは,点Cから点Aまで毎秒 27 の速さで移動する。 3点P. Q. R が同時に移動し始める。 (1) 三角形 ABCの面積は ア キ B (2) 移動し始めて1秒後, PQ の長さは コサ クケ 5 A 10 イウである。 エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後, 三角形 PQR の面積は -. 三角形 BPQ の面積は 数学 (推薦) 医療技術・福岡医療技術学部 シ チツ ソタ ナニ スセ |テト である。 である。 〔4〕 (1) 変量xの標準偏差が4, 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒 10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B C D E F G H I J 得点 3 4 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は, 4点であった。 この修正を行うと, 平均値は修正前から I |オ点減少する。 更に, 生徒Gに加えて, 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと, データの分散は生徒Gと生徒E の得点の修正前とくらべて カ 。ただし カ には⑩~②からいずれかを選び なさい。 ⑩ 増加する ① 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(x- キ ク )とする。 変量yの平均値は0. 分散は ケコ |サシとなる。

回答募集中 回答数: 0
数学 高校生

⑴がどうしてこう求めるのかよくわかりません。

第9章 整数・数学と人間の活動 Think 素因数に関する問題 **** 例題 254 (1) 301が3で割り切れるとき、んの最大値を求めよ。ただし、は 然数とする. J (2) 100! 一の位からいくつ0が連続する整数か答えよ。 30・29・28・27・・6・5・4・3・2・1 考え方 (1) 30!÷3= |解答 つであるから、3で割り切れるというこ 13603'=3, 32=9, 3°=27, 3‘=81 (30) より 3, 32, 33 について考える。 (ガウス記号を使った素因数の個数の表し方は p.594 を参照 とは, 30! 3 を因数としていくつ含むか考えればよいのん (2) 一の位から続く0の個数は,含まれる因数10の個数に等しいということである。 + 10=2.5 であり, 10は2と5の1個ずつの積であるから, 因数10の個数は、 2と5の個数のうち少ない方となる。 に掛けると、その値がともに (1) 1から30までの自然数について。 3の倍数は, 36, 9, 12, 15, 18,21, 24, 27,300000g= 羽 54 の10個 32の倍数は, 9, 18, 27 の3個 bet 9000 3の倍数は、27の1個 top)+(depe) +(D+offee)= であるから 30! に含まれる因数3の個数は、 次の よって, 314 が題意を満たす最大の値であるから, edda 求めるんの最大値は, k=14₂0PAPARDIS (2) 100! に含まれる因数10の個数は, 10=2.5 より 然目2と5を因数としていくつ含むか調べればよい さらに5を因数として含む個数の方が2を因数と して含む個数より少ないため, 5について調べる. 1から100までの自然数について, 5の倍数は, 5,10,15, 20, 25,5075,100の4個 100の20個 20 の倍数は, (個) 十七itorixe= 10+3+1=14 4 により,100! に含まれる因数5は、20+4=24 (個) であ り,100! に含まれる因数10も24個である。05 +100 24 15 よって求める 0 の個数は, 61 (22+4025 +500) X-W 303の商 30÷9の商 30÷27 の商 1から100までの自然 数 ....., 95, 2の倍数は50個 5の倍数は20個 3の倍数 369 12,15,18,2124,27,30 O, O, O, O, O, O, O, JMMJBS (100)より、 °=125 5と52だけ調べれば よい. 4倍草下 実際,2の倍数だけで も50個ある。」 注》〉 30! に含まれる因数3の個数は次のような表を使うとわかりやすい int 因数10の個数と求め の個数は一致する。 ○ 10 個 表より 30 3 を因数として, 10+3+1=14 (個) 含む. (○は3の倍数に 含まれる因数3 3個を表す) 118 (1) 20! が 2で割り切れるとき, kの最大値を求めよ。 ただし,は自然数と する。 214 (2) 300! 一の位からいくつ0が連続する整数か答えよ.4)( 数の24 2. p.542回

回答募集中 回答数: 0
数学 高校生

2枚目の問題を教えてください!お願いします🙇‍♀️

次の文章を読んで、ト キルケゴールは、近代の客観的真理を重視するあり方を批判し, 主体的真理を追求するこ と説いた。それによって人間本来の存在の仕方である 「実存」の現出を訴えた。 客観的真 理は理性によってとらえられる、万人にとって普遍的に認識される真理であるのに対して, 主体的真理はAである。 キリスト教的な世界観に強く依拠した生涯を送った彼にとって, そのような実存は、世俗的な人間的集団やそのような集団において共有される倫理感からは 決別し、自身を神の前に一人立つ ( 1 ) として獲得されるものであった。 彼は、それに いたる三つの段階を想定した。 それは(a) 美的実存,倫理的実存, 宗教的実存である。 一方、ニーチェによると, (b) キリスト教の禁欲主義的で平等主義的な倫理観は,自己を より高め、強くなろうとする衝動をもち得ない, または実現し得ない弱者が、そういった衝 動をもち、または実現しうる強者に対していだく怨恨感情である ( 2 )に依拠している という。彼はキリスト教的倫理観や世界観を否定する際に「神の死」 (「神は死んだ」)と いう表現を用いる。 神の死によって, キリスト教的世界観の直線的時間軸は崩れ, 円環上の

回答募集中 回答数: 0