学年

教科

質問の種類

数学 高校生

オレンジマーカーの部分がわからないです。教えてください🙇

基本題 29 漸化式と極限 (4)・・・ 連立形 00000 P1(1, 1), Xn+1= 1 4 4 -xn+ yn, yn+1= 5 3 4 5 =2xn+1/yn (n=1,2)を満たす平 面上の点列 Pn(xn, yn) がある。 点列 P1, P2, くことを証明せよ。 はある定点に限りなく近づ 指針 点列 P1, P2, 解答 [類 信州大〕 p.36 まとめ, 基本 26 がある定点に限りなく近づくことを示すには, lim xn, limy がど もに収束することをいえばよい。 そのためには,2つの数列{x}, {yn} の漸化式から, Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意 のようになる。) Xa+1 = 1/4 x + 1/13/ -xn+ ①+②から P1(11) から x+y=2 3 xn+ yn (2) x=1,y=1 5 Yn ①, yn+1= Xn+1+yn+1=xn+yn よってxn+yn=Xn-1+yn-1=......=x+y=2 ゆえに yn=2-Xn 11 8 1 これを① に代入して整理すると Xn+1=- xn+ xn+1=- 20 5 32 11 32 特性方程式 変形すると Xn+1 Xn 31 20 31 11 8 Q=- a+ の解は 20 5 32 1 また X1- == 31 1+0=6 32 31 a= 31 32 32 ゆえに xn- 31 1 数列 xn- 20 31 32 1 よって limxn=lim 7118 31 31 また n→∞ n→∞ limyn=lim(2-x)=2- 2)=32 11 \n-1 31' 20 11. A-10 11 公比 の等 20 31 比数列。 32 30 31 31 y=2x から。 したがって, 点列 P1, P2, 32 30 ***** 31 31 は定点 (2220) に限りなく近づく。 注意 一般に,x=a, yi=b, xn=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる数列 {x},{yn} の一般項を求めるには,次の方法がある。 方法1 X+1+αyn+1=β(x+αyn) として α,βの値を定め、等比数列{x,+yn} を利 用する。 方法2 yn を消去して, 数列{x} の隣接3項間の漸化式に帰着させる。 すなわち, 1 xn+1=pxn+qyn から yn=Xn+1 P -Xn よって yn+1= Xn+21 Xn+1 q q q これらを yn+1=rxn+syn に代入する。

解決済み 回答数: 1
数学 高校生

青い下線部の式の意味が分かりません。 ①の式をどのようにしたら青の下線部のようになるのでしょうか。 分かる方教えていただけませんか??

WI 398 基本 例題 31 an+1=pan+(nの1次式) 型の漸化式 次の条件によって定められる数列{an} の一般項を求めよ。 α = 3. an+1=2an-n CHART & SOLUTION 漸化式 an+1=pan+(nの1次式) (カ≠1) 2 1 階差数列の利用 an+1-f(n+1)=p{an-f(n)} と変形 ②の変形については右ページのズーム UP を参照。 下の解答は口の方針による解法で,別解は②の方針による解法である。 解答 an+2=2an+1_(n+1), 与えられた漸化式で、 am+1 =2ann 辺々引いて また bn=an+1-an とおくと dn+1=26-1 b=az-a=(2・3-1)-3=2 ante-anti=2(anti-an)-1 n+1とおく。 ... ①4 ①から bn+1-1=2(bn-1) α=2α-1 を解くと 更に b-1=1 a=1 ゆえに、数列{bm-1}は初項1, 公比2の等比数列となり bn-1=1・2"-1 すなわち bn=2n-1+1 よって, n≧2 のとき n-1 an=a1+2 (21+1)=3+- 2-1 2"-1-1+(n-1) k=1 =2"-1+n+1 ナ行 α=3 であるから,この式は n=1のときにも成り立つ。 したがって an=2n-1+n+1 [別解 an+1=2an-n を変形すると an+1_(n+2)=2{an-(n+1)} また α-(1+1)=3-2=1 ゆえに、数列{an- (n+1)} は, 初項1,公比2の等比数列 となり an-(n+1)=1.2"-1 したがって a=2"-1+n+1 inf. 6m=2"-+1 を求め た後は lan+1=2an-n lan+1-a=201+1 から an+1 を消去して |an=2"-1+n+1 と求めてもよい。 n=1 とすると 2°+1+1=3 ① この変形については右 ページのズームUPを 参照。 Joh すると

解決済み 回答数: 2
数学 高校生

a1 が 4分の3になる理由が分かりません

O 50 重要 例題 25 確率に関する漸化式と極限 00000 Aの袋には赤球1個と黒球3個が,Bの袋には黒球だけが5個入っている。 それぞれの袋から同時に1個ずつ球を取り出して入れ替える操作を繰り返す。 この操作を繰り返した後にAの袋に赤球が入っている確率をanとする。 (1) an を求め(liman を求めよ。類名城大 CHART & SOLUTION 711 基本19 重要 24. 数学B 基本 回後と (n+1) 回後から漸化式を作る ***** 確率の極限 回後に,どちらに赤球があるかで場合分けして考える (赤球が) n回後 (n+1) 回後 3 (右図参照)。 n回後に赤球がAの袋にある確率は an で あるから,Bの袋にある確率は 1-αであることに注意 し, + と の漸化式を作る。 解答 =1-01 Aにある an X- → an+1 Bにある 1-an 5 E A —— 5 11 an+1= Fan+ an+1 数列 10.4 は,初項ai-100 (1) (n+1) 回繰り返した後にAの袋に赤球が入っているのは [1] n回後にAの袋に赤球があり,(n+1)回目にAの袋から黒球が出る [2] n回後にBの袋に赤球があり,(n+1) 回目にBの袋から赤球が出る のいずれかであり,[1], [2] は互いに排反であるから an 31 an+1=an1+(1-an) - 4 2/10an + 1/3 を変形すると 4 $3 4 11 61 11 とくせい 方程式 11 11 1 -an 20 5 4 = an 9 20 44) 特性方程式 の解は 11 公比 4 9 36 " 20 a= 等比数列であるから 11/11\n-1 69 an = 9 36 20 よって 11/11\n-1 an = 36 20 + 9 (2) liman=lim 11/11\n-1 4 n→∞ n→ 00 36 20/ a+ 9 lin 内 11\n-1 no 20 =0.0 PRACTICE 25º OPS 三角形 ABC の頂点を移動する動点Pがある。移動の向きについては,A B→C, C→Aを正の向き, AC, C→B, BAを負の向きと呼ぶこ する。硬貨を投げて,表が出たらPはそのときの位置 う1度硬貨を投げ ・キ

解決済み 回答数: 1
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0