学年

教科

質問の種類

数学 高校生

数IIの三角関数の問題です。 (2)よ▪️の部分が どのように求めたら良いのか計算の仕方がわかりません 教えて下さい。

実戦問題 73 三角関数を含む方程式・不等式 イ ケ 0は 0≦02 を満たす定数とし, xの2次方程式 x+2(1-cos0)x +3-sin'0-2sin20-2sino (1) 方程式 (*) が異なる2つの実数解 α, β をもつとき, 0 は不等式 2sin20+ ア sin 満たす。このことから, 0 の値の範囲を求めると、 (2)x = sin が方程式 (*) の解となるような角0は全部で オ π, I カ キ ク サ さらに0が鋭角のとき, 方程式(*)の x = sin0 以外の解はx= 個ある。 [シス +√ <日< 0... (*) coso を考える πである。 解答 (1)xの2次方程式 f(x)=0が異なる2つの実数解をもつとき判別 式をDとすると D > 0 D = (1-cos)2- (3-sin20-2sin 20-2sin0) 4 である。 ax²+2 bx + c 6-C >0を sin20=2sin0 coso AB > 0⇔ [4<0 (A>0 または B>0 [B<0 1 1 2 よって = 2sin20+2sin0-2cos0+ (sin' + cos20) -2 = 2sin20+2sin0-2cos0-1 = 4sincos0+2sin0-2cos0-1 (2sin-1) (2cos0+1) (2sin-1) (2cos0+1)>0 002 の範囲に注意して (i) sin0 > かつ cos mie200+ 2000 200 のとき 1 sinO > 2 Key 1 1 5 π sin0 > より <<π 2 2 cose > より 2 3 <8< 6 (1,200+7nie) 0≤0</, <<2π iz E) よって,この共通部分は 4 2 -π - 1 (ii) sin0 < かつ cos<- 2 1/2のとき cose > W= Key 1 sin< π 5 より π < 0 <2π E 6 sin< cose <- 10より 4 12 π 2 3 よって、この共通部分はx500 (i), (ii) より π << (注)より1/01/2 5 3 <0· π 12 <cos 2 -/ - (2) x = sin0 が方程式 (*)の解であるとき sin20+2(1-cost)sin0+3-sin20-2sin20-2sin0 = 0 y 11 I 整理すると, 3(sin20-1) = 0 より sin20=1 0≦204πの範囲で 20 = 元 5 2' 2 π π 5 よって、条件を満たす 0 は 0 ' 4 4 πの2個。 20 の値のとり得る範囲に注意 する。 さらにが鋭角のとき, 0 π == であるから 4 方程式 (*) は x2+(2-√/2)x + 1/1 (1-2√2) = 0 左辺を因数分解して x x = 0 方程式 (*) はx=sin- π 1 よって, x = sin = √2 以外の解はx= 2= -4+√2 2 を解にもつことがわかってい るから、 因数分解する。 のカギ!

回答募集中 回答数: 0
数学 高校生

2)、実数解が存在するための条件に関する質問です。 (1)で出てきた不等式が満たされればxが実数解を持つ。そのために不等式をyの関数とみて、yの最大値が0以上となるときの条件が、(*)をみたすxの存在条件になるのは分かってるつもりなんですが(簡単に言うとyも変数であるからだ... 続きを読む

54 第2章 複素数と方程式 標問 22 判別式 a b を実数の定数とするとき r'+y'+axy+b(x+y)+1=0 について考える. 以下の問いに答えよ. (*) α-2<0 より 求める条件は -462+4(a+2)≦0 すなわち J SE 55 MOORCONS ES 1% 0=8 +0+ (0) 62≧a+2 2次方程式 ax2+bx+c=0(a≠0) の解は x= -b±√b2-4ac 2a であり, a,b,cが実数のとき,D=62-4ac の符号により (2) 2<a<2 とする.(*)をみたす実数x, y が存在するための条件をα b (1) 実数y を固定したとき,についての2次方程式(*)が実数解をもつため の条件をα by を用いて表せ . 研究 (岐阜大) を用いて表せ. →精講 (1) について式を整理します . (*)は,実数係数の2次方程式ですか 解法のプロセス (1) 実数係数の2次方程式が実 数解をもつ ら 実数解をもつ (判別式) ≧ 0 が成り立ちます。 (2) (1)で実数が存在する条件をおさえてある ので、あとは実数y が存在する条件を求めます。 (1)で得た不等式を」についての2次関数のグラフ として考えるとよいでしょう. 条件 -2<a<2 はこのグラフが上に凸であることを示しています. <解答 (1)yは固定されている. (*)をæについて整理すると 2+(ay+b)x+y+ by + 1 = 0 ↓ (判別式) 0 (2) 2次関数f(y) のグラフが 上に凸であるとき f(y) ≧0 をみたす実数が 存在する ↓ f(y)=0 の (判別式) 0 判別式をDとおくと, (*)が実数解をもつための条件は, D≧0 である. D=(ay+b)2-4(y2 + by +1) より (a²-4)y°+26(a-2)y+62-4≧0 ......① (2) 2<a<2 のとき,不等式① をみたすyが存在するための a, b の条件を求 めればよい. f(y)=(a²-4)y2+2b(a-2)y +62-4 とおくと,-2<a<2であるから a-4<0 であり,f(y) のグラフは上に凸である. したがって,f(y)≧0 をみたす実数yが存在するための a,b の条件はf(y)=0の (判別式)≧0 である. b2(a-2)-(a2-4)(62-4)≥0 ..(a-2){62(a-2)-(a+2)(62-4)}0 ..(a-2){-462+4 (a+2)}≧0 D>0 ⇔ 異なる2つの実数解をもつ D=0 ⇔ 重解をもつ D<0 異なる2つの虚数解をもつ といった具合に解を判別することができる. a,b,c のいずれかが虚数のときは,判別式により, 重解であるか否かの 判別は 62-4ac = 0, 0 により可能であるが, 実数解をもつか否かの判別 はできない. 注意が必要である. 例えば, 虚数を係数にもつ2次方程式 x2-2ix-2=0 の判別式をDとおくと D MC =(-i)-(-2)=-1+2=1 (D≠0 より重解でないことが分かる) 判別式は正であるが, 解の公式より x=i±√1=i±1 であり,実数解をもたない.さらに, 方程式 2-(1+i)x+i = 0 である。 は 2-(1+i)x+i=(x-1)(x-i) と変形されるから x=1, i と 実数解と虚数解が共存する. 虚数を係数にもつ2次方程式については演習問題 30-130-2 も参照 せよ. 標問 109では3次方程式の判別式についても扱っている. + y 演習問題 A 22 整数とし, 2次方程式(k+7)'-2(k+4)x+2k=0 が異なる2つ (中京大) の実数解をもつとき,kの最小値および最大値を求めよ. 第2章

回答募集中 回答数: 0