学年

教科

質問の種類

数学 高校生

下の方、縦線の右側にk=4+√14のときは第3象限で接する接戦となるとありますがなぜですか??

6:1 x, が2つの不等式x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, 最大値と最小値, およびそのときのx, yの値を求めよ。 の y-2 x+1 基本122 連立不等式の表す領域Aを図示し, y-2 x+1 -=kとおいたグラフが領域Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy2=k(x+1)は,点(1,2) を通り, 傾きがんの直線を表すから,傾きんのとりうる値の範囲を考えればよい。 CHART 分数式 y-b y-b 最大 最小 =kとおき, 直線として扱う x-a x-a x-2y+1=0. ①, x2-6x+2y+3= 0 解答とする。連立方程式 ①,②を解くと ② ③ (x, y)=(1, 1), (4, 5) ゆえに、連立不等式 x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 A は図の斜線部分である。 ただし, 境界線を含む。 y-2 x+1 =kとおくと 10 y-2=k(x+1) 12 2 0 5 2 32 すなわち y=kx+k+2. ...... ③は,点P (-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき,k の値は最大となる。 ② ③ からy を消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると k(x+1)-(y-2) = 0 は, x=-1, y=2のとき についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 D =(k-3)²-1-(2k+7)=k²−8k+2 直線 ③ が放物線 ②に接するための条件はD=0であるか k=4±√14 ら, k-8k+2=0 より 第1象限で接するときのんの値は 4/14k=4+√14 のときは, このとき、接点の座標は (√14-1,4√14-12) 第3象限で接する接線と なる。 次に,図から, 直線 ③ が点 (1, 1) を通るとき,kの値は最 小となる。このとき k=1=2=123k=メ 277に代入。 よって 1+1 x=√14-1,y=4√14-12 のとき最大値 4-14; 1 x+1 x=1, y=1のとき最小値 - 2

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0
数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0