学年

教科

質問の種類

数学 高校生

(1)の二つ目の式の条件がa≠0になる理由がわかりません 一つ目の式ではax^2なので判別式を使おうとするとa≠0になるのはわかるのですが二つ目の式ではもうx^2となってるのでa≠0の条件は必要ないかと思いました

基本 例題116 2次不等式の応用 (2) OOO0 2つの2次方程式 ax?-4x+a=0, x?-ax+a°-3a=0 について,次の条件を満たす定数aの値の範囲をそれぞれ求めよ。 (1) 2つの方程式がともに実数解をもつ。 (2) 少なくとも一方の方程式が実数解をもつ。 【類 大阪電通大) 基本 98 指針 2次方程式 ax?+bx+c30 の判別式を D=6°-4ac とすると 実数解をもつ → D20 2つの2次方程式の判別式を,順に D., Da とすると, aキ0 の条件のもとで (1) D20 かつ Da20 (2) D,20 または D220 → 解を合わせた範囲(和集合:p.77 参照) 解の共通範囲 解答 2次方程式 axー4x+a=0, x°ーax+a°-3a=0の判別式を, それぞれ D., D2とすると 42つの判別式を区別するた めに,D., Da としている。 タ=(-2)°-aa=-(a°-4)=-(a+2)(a-2) 4 D=(-a)°-4-1-(α°-3a)=-3a°+12a=-3a(a-4) (1) 問題の条件は,aキ0 のもとで D,20から(a+2)(a-2)<0 aキ0 であるから D20から 3a(a-4)<0 aキ0 であるから の, 2の共通範囲を求めて (2) 問題の条件は,aキ0 のもとで のと2の範囲を合わせて D,20 かつ D20 よって -2<as2 42次方程式であるから (x° の係数)キ0 -2Sa<0, 0<a<2 2 よって 0Saハ4 0<aS4……… (2) -2 0 2 4 a 0<as2 2② D20 またはD220 -2Sa<0, 0<a<4 -2 0 2 4 a

回答募集中 回答数: 0
数学 高校生

⑵です。範囲が被っているためこのような答えの書き方になっているのは理解できました。 もし、シャーペンで書いてあるように、被っている部分の範囲を書いていたら減点(もしくは×)されますかね??

(2) 少なくとも一方が実数解をもたな O00 184 基本 例題116 2次不等式の応用(2) 基本 例 立方体 Aた について,次の条件を満たす定数aの値の範囲をそれぞれ求めよ (1) 2つの方程式がともに実数解をもつ。 体なくとも一方の方程式が実数解をもつ。 ーすでとらでもの 指針> 2次方程式ax"+bx+c=0 の判別式をD=6°-4ac とすると x-ax+a°-3a==0 2つの2次方程式 体Bを作る ax?-4x+a=0, た直方体C [類大阪電通大) ならないと 指針>不等式 まず、 2つの2次方程式の判別式を,順に D., D. とすると,aキ0の条件のもとで 解の共通範囲 実数解をもつ→ D20 れぞれ なお, (1) D20 かつD:20 (2) D,20 または D:z0 → 解を合わせた範囲(和集合:p.77 参照招) 赤ラ CHART 解答 2次方程式 ax°-4x+a=0, x°-ax+a°-3a=0 の判別式を, それぞれ D, Da とすると ま 関 解答 42つの判別式を区別する めに,D., Dzとしてい ●青 立方体 A の1 E D、 -a 直方体 B, 直 直方体B: D,=(-a)°-4-1-(a-3a)=-3a°+12a=-3a(a-4) (1)問題の条件は, aキ0のもとで D20から(a+2)(a-2)<0 D20 かつ Da0 (2次方程式であるから 直方体C: よって -2Sas2 (x°の係数)キ0 各立体の辺の aキ0であるから -2Sa<0, 0<a<2 (x-2)cm で (Bの体積)<C D20から 3a(a-4) <0 よって 0Sas4 aキ0であるから 0, 2の共通範囲を求めて (2) 問題の条件は, aキ0 のもとで 0とのの範囲を合わせて 0<aS4……2 (x 0<a<2 -2 0 2 ゆえに x3 D20 または D220 -2Sa<0, 0<as4,0<052 よって x2 O- x?-10x+8= -2 0 2 ゆえに,② の 検討) 2つの方程式の一方だけが実数解をもつ条件 上の例題に関し,「一方だけが実数解をもつ」 という条件は, D,20, D20 の一方だけが成り立つことである。 これは,右の図を見てもわかるように, [D20または Da20」から 「D,20 かつ D20」 の範囲を除いたもので, -2<a<0, 2くa<4である。 タブ でき 5- x?-4x-4=0 よって,3の xS 0, O, 6の 以上から,立 ① FO -2 0 2 練習| 2つの2次方程式xパーx+a=0, x?+2ax-3a+4=0 について, 116定数aの値の範囲を求めよ。 2+2 (1) 両方とも実数解をもつ (3) 一方だけが実数解をもつ ●Pd Windd 練習 右の医 117 をもつ 次の条件を満 長方形 DE の p.203 EXS)

解決済み 回答数: 1