学年

教科

質問の種類

数学 高校生

⑶で最後のpの倍数の個数を求める式がよくわかりません。

例題260 互いに素な自然数の個数 を自然数とする.m≦nでmとnが互いに素である自然数mの個数 をf(n) とするとき、 次の問いに答えよ. (1) f (15) を求めよ. (2) f (pg) を求めよ.ただし, p, g は異なる素数とする. (3) f(p) を求めよ.ただし、pは素数, kは自然数とする. (名古屋大・改) 考え方 (1) 「m≦nでmとnが互いに素である自然数mの個数をf(n) とする」とはどう いうことかを(1) の f (15) をもとにして考えてみる. f(15) はn=15 の場合であるから, ☆「m≦15 でmと15が互いに素である自然数mの個数は (15) となる。 つまり, (1)を言い換えると次のようになる. 合 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の 自然数は, 3,6,9,12, 15,510の7個である. よって, 15 と互いに素な自然数の個数は, f(15)=15-7=8 もつやっ魂 (2) gは異なる素数であるから、 pg と互いに素でな い自然数, すなわち, pの倍数またはgの倍数であり, 以下の自然数は, ①の倍数 10 2.⑩..... (q-1)0, HTA 教えた 「15 以下の自然数で15と互いに素である自然数はいくつあるか」 (2)(1)では,15=3・5 であった.(2)ではggは互いに素より(1)と同様にして 考えてみる. 個 ⑨の倍数 1⑨ 2.⑦ .…... (p-1) @カ@のか個 が互いに 3Mの数) ⑩9の倍数 1 SCAND り (q+p-1) 1 よって, bg と互いに素な自然数の個数は 1.2.3.....pa f(pq)=pa(g+p-1) Focus の 個 P9以下の自然数の **** = pg-p-g+1=(-1)(g-1) (3) p, kは自然数であるから, が以下の自然数は CHA (1.2.3.....PR) 個ある. pは素数であるから,以下の自然数の倍数 は全部で, pp=1個) 123 したがって, f(p")=pk-pk-1 練習 260 (g)とする. *** 「互いに素である」の 否定 「互いに素でな い」 を考える. 5 (1) を一般的に考える. p=3,g=5 としてみ ると見通しがよくなる. pg÷p=g(個) pg÷g=p(個) (1) f(77) を求めよ. (2) f (pg) = 24 となる p, g の組をすべて求め上 pg 以下の自然数 の倍数 STY 互いに素である自然数の個数は、補集合の考えを利用せよ ☆互いに素でない(1以外に共通の縞ある)もの数える 9の倍数 P9の倍数 (p.185 例題 94 参照) f(n) をオイラー関数 という. (p.538 Column 参照) ががが(-1) 例題260 の f (n) について次の問いに答えよ. ただし, p, g は異なる素数 改) 12 女 (c た C

回答募集中 回答数: 0
数学 高校生

平面ベクトルについて質問です。 【2】でf(-1)f(1)≧0となっていますがどちらもせいになる場合、どこかでy軸0と交わる点が出てくるのではないかと思いました。教えて頂きたいです。

東京 新課程 リードα 化学量 322 数学B 91-402 今生 (nb+mc)-(-mb+nc)=0 Tok -mn/bf-(m²-n²) b-c+mnlcf=0 であるから 6-c=0 (2) AEL DF であるから よって ゆえに <ポイント> 文字をおいて 式をたてる m0.n>0.man であるから 7. であるから AE-DF=0 EX △ABCの辺BC, CA, ABの中点をそれぞれ D, E, Fとする。 △ABCの内部に点をとり 分 OA, OB, OCの中点をそれぞれP, Q. Rとするとき. 3 直線 DP. EQ, FRは1点で 22.0t 17 わることを証明せよ。 OA=4,OB=6, OC = とすると (m²-n²)b-c=0 00+ OE- OF_a+b 2. 2 OP-4.00-4. OR- OT=OE+0Q 2 ABLAC よって,線分 DP, EQ. FR の中点をそれぞれS, T. Uと すると OU_OF+OR 2 OS=OT-OU 05-06+0³ 16+c+2)_+6+è OD+OP OS= 2 --- 4 a+b+c <p = -1/2) = ²² 4 1 (ētā + (+5+)_+6+à OR=rOA+(1-1)0Q ****** 2 うちけん =rat1246..... ① 条件から OP=ta, OQ=-1-6 QR: RA=r: (1-r) (0<r<1) とす ると 4 PR: RB=s: (1-s) (0<s <1) とすると OR=(1-s) OP+sOB =(1-s)ta+sb 0 ○ ←AE-DF 1 (m+n)² (nb + m²) -(nc-mb) -045 (nb+mc) (-mb+nc)- の位置を B b B・ ゆえに よって, 線分 DP, EQ, FR のそれぞれの中点は一致するから. ←3点S, T.Uの位置 ベクトルが一致。 3 直線 DP, EQ, FRは1点で交わる。 P EX 平面上に長さ3の線分 OA を考え, ベクトル OA をaで表す。 0<t<1 を満たす実数に対し 18 (東北大) このとき,どのように0をとっても OR と AB が垂直にならないようなtの値の範囲を求めよ。 a 求めたい すようにとり。 B を OB = で定める。 線分 OBの中点をQとし,線分 AQ と線分BP の交 点をRとする。 F Q ( A D R. DE PQ 12 長さが同じ 平行であるこ てから FA なす角が< 8 <180° であるから 60 であるから. ①.②より 1-1=s =(1-s) t. 2 (0<t<1) [HINT] QR: RA=r: (1-7). PR: RB=s: (1-s) とし OR を2通りで表 す。 OR·AB=(2—¿ª+¹−16)·(6−à) axb =2²7 (−tlāß+(1−1)|B³+(2+−1)ã•b} =2-{-9t+4(1-t)+6(2t-1)cos B} =26(2t-1) cose-13t+4} 2-1 0 ゆえに 求める条件は、任意の8 (0° < 8 <180°) に対して、 ここで 0<t<1であるから +1a1-3. 151-2 のとき 62t-1) cos 0-13t+4≠ 0 が成り立つことである。 -1<p<1 ここで COSB=かとすると よって、f(p)=6(2t-1)p-13t+4 とすると. -1<p<1を満た ゆえに よって ゆえに ←△AOQBPに ついて、メネラウスの定 理を適用してもよい。 OB AP 器・照·賜=1 BQ RA よって すすべてのかについてf (p) = 0 が成り立つようなt の値の範囲 を求めればよい。 11/1/2のと 0<t</1/23 1/12 <t<1との共通範囲は st</, /<<t<1 2 [1] [2] から 求める t の値の範囲は 一同じ符号ならok、 P(-1). 2 1-t FOR 122=1 f(p=-12 であるから.f(p)≠0 を満たす。 [2] OKI</1/11/12 <<1のとき f(p) は1次関数であるから, -1<p<1を満たすすべてのか についてf(p) 0 が成り立つための条件は f(-1)ƒ(1) ≥0 (-25t+10) (-t-2) 20 (5t-2)(+2)≧0 ts-2. / st 1章 OR=OA+2(1-1)0Q +2(1-1) st<1 ] [平面上のベクトル) QR RA=1:2(1-t) raj U EX ta+(1-1)5 2-1 ←0°<8180°のとき -1<cos@<1 ←f(-1)=0 または f(1)=0 または 「f(-1) f(1) が同符号」

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0