学年

教科

質問の種類

数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
数学 高校生

数2の直線の方程式です。 y=ax+bの式に代入して連立方程式にしても解けると思うんですが、なんでこんな公式があるんですか?!

122 基本 例題 70 直線の方程式 次の2点を通る直線の方程式を求めよ。 (1) (3,-2), (4, 1) (3) (-2, 3), (-2,-5) CHART & SOLUTION 00000 (2) (4, 0), (0, 3) (4) (-3, 2), (1, 2) p.120 基本事項 異なる2点(x1, 1), (X2, yz) を通る直線の方程式 [1] X1 X2 のとき [2] x1=x2 のとき x=x1 [解 Ante 合 (1) y-(-2)=1-(-2) 2(x1) x2-x1 交 4-3 (x-3) / (1) すなわち y+2=3(x-3) よって y=3x-11 3 1 310 (2) y-0-3-0 (x-4) 0 4 x Ea 3 よって y=-2x+3 (3) x座標がともに-2であるから x=-2 (4) y座標がともに2であるから y=2 Stixol YA [int 公式 [1] yy=12-11(x-x) の X2-X1 両辺に X2-x1 を掛けて (y2-y₁)(x-x1) -(x-x1)(y-1)=0 x= x2 とすると (y2-y₁)(x-x1)=0 yyであるから x=x (公式 [2]) (3)3 (4) 2 -2 ! よって, * は公式 [1] [2] -3 0 1 x をまとめたものである。 (p.120 基本事項 1③) -5 POINT a≠0, b=0 のとき, 2点 (α, 0), (0, 6) を通る直線 lの方程式は b-0 y-0= (xa) すなわち + 1/2=1 0-a a b ya このとき, αを直線lのx切片, bを直線lの切片という。 (2) は,これを公式として用いてもよい。 0 a b 全で ための PRACTICE 70° 次の直線の方程式を求めよ。 (1) 点 (35) 通り,傾きが√3 (3)2点 (5,1) (3,2)を通る (5)2点(-3,1) (-3, -3) を通る Ja,0)s(s) (2)2点 (5-3), (-7, 3) を通る (4) 切片が4, y切片が2z (6)2点 (1-2) (-5-2) を通る x

解決済み 回答数: 1
数学 高校生

(2)なのですがなぜ<ではなく≦なのでしょうか? Aの範囲も含んで良いのですか? よろしくお願いいたします。

を 490. 基本 例題 38 (ア) ANB (イ) AUB (1) 次の集合を求めよ。 (2) ACCとなるんの値の範囲を求めよ。 2→3→△ 実数全体を全体集合とし, A={x|-2≦x<6}, B={x|-3≦x<5}, C={x|k-5≦x≦k+5}(kは定数) とする。 不等式で表される集合の歌 00000 は 370 370 470 B479 AUB 68 基本事項 1 CHART & SOLUTION 不等式で表された集合の問題 数直線を利用 集合の要素が不等式で表されているときは、集合の関係を数直線を利用して表すとよい。 その際,端の点を含む(≦, ≧)ときは● 含まない (<, >) ときは○ で表しておくと,等号の有無がわかりやすくなる (p.55 参照)。 例えば,P={x|2≦x<5} は右の図のように表す。 2 5 x 解答 (1) 右の図から (ア) A∩B={x|-2≦x<5} (イ) AUB= {x|-3≦x<6} (ウ) B={x|x<-3,5≦x} (エ) AUB={xlx<-3, -2≦x} (2)ACCとなるための条件は -B- -B- -3-2 56 x 2章 補集合を考えるとき 端の点に注意する。 〇の補集合は ● ●の補集合は○ 5 集 集合 C ・A k-5-2 ① k=1のとき x 6≦k+5 C={x|-4≦x≦6} (2 k-5-2 6 k+5 が同時に成り立つことである。esk=3のとき C={x|-2≦x≦8} UB ①から k≦3 ②から 1≦k であり、ともにACC 共通範囲を求めて 1≦k≦3 を満たしている。 8=0

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1
数学 高校生

次の問題で思考プロセスが青いところから下が何がしたいのかよくわからないのですがどなたか解説お願いします🙇‍♂️

思考プロセス an= = (+)" cos —— nx 2 COS nπとする。無限級数Σam の和を求めよ。 <ReAction 無限級数の収束 発散は,まず部分和 Sm を求めよ 例題111) 規則性を見つける YA n=3m-2 αの の部分は, n= 1, 2, 3, のとき 1 1 1 2 2 2' 2' をくり返す。 |場合に分ける ={1-(1)}/{1-(1)}+//{1-(1)} 3m =--{1-(/)} n→∞ のとき, m→∞ となるから 2 lim S3 = 7 2 n=3m 7 ここで. cos 1 より 10 1x 2 n=3m- 0≤ COS lim 12-00 1 (1/2) = 0 より, はさみうちの原理より an → 0 一方, Ssm-1= Ssm-αsm, Ssm-2=Ssm-1-asm-1 であり, In=3m n=3m-1(mは正の整数) の場合に分けて考える。 In=3m-2 (ア) S3m = a1+a2+as+..+α3 =(a1+a+…+α3m-2)+(a2+α+... +α3-1)+(as+a+..+α3m) n→8 → すべて一致すれば (イ) S3m-1= S3m-a3m= n→∞ その値が24円 (ウ) S32S3-1-43m-1=| n→∞ an n=1 解 S= ak とおくと, n=3mm は正の整数)のとき 数列{cos 2 MTが 3 12 4 = COS (2/2) COS2 1 2' 2 1 1,... の (1/2) くり返しになることに着 目して場合分けする。 cos COS4 Sam-cos+() cos+(½) 8 COS +(1/2)*cos 37 + (12)² cos 107 COS COS -π+ 3 +・・・+ 3m- ・1/11/2+(2)+....+(1/1) ***} =- +・・・+ (4)+ 3m COS2m² //{(1)+(2)+....+(1/1)} +・・・+ 3m-1 各{}内は,すべて 公比 t +{(12)+(2)+..+(1/2)}会 (12),数の等 3m 3 12/{1-(1/2)^} (1){1-(1)} 1 1 2 1-(1/2) 3 2 1 3 比数列の和である。 (1/2){1-(1)} + 1 3 no のとき αsm 0, αsm-10 であるから lim S3m-1=lim S3m-2 = lim Ssm したがって 2 19L-00 lim S. = (+) cos nx = COS Point 無限級数の計算の順序 2 7 例題116のPoint で学習したように, 無限級数では, 勝手に項の順 けない。 そのため, 結果は同じであったとしても、 次のように解答を 4 COS- acosx+(1) cosx+(2) cos = COS n=1 2 3 3 COS 14 +(1/2) cos/1/12+(1/2) 1 十 ={12+(1/2)+(2)+...}cos/3+{(1/2)+(1/2)+(- 1 2 (/)+ 1 8 3 +(+) cos+(4) 00810+ COS COS 3 COS 1 316 36 123 12 + ( 12 +{(1/2)+(1/2)+1 (-1/2)+ (2) 1 117 無限級数 1 nπ sin² 2 の和を求めよ。

解決済み 回答数: 1
数学 高校生

(1)についてで、Xを消去する時消去する文字Xについての範囲だけを考慮すれば良いと思っていました。しかしこの問題で、Xを消すとyの範囲も消えてしまったのですが、消す以外の文字の範囲についても引き継ぎを気にする必要があるのですか?解答よろしくお願いします。

XX 例題 267 面積[7] ・・・円と放物線で囲まれた部分 ★★★☆ 放物線y=x2. ① と円 x+(y-α)2 = 1 ... ② は異なる2点で接する。 (1) 定数α の値を求めよ。 (2)②の外側で,放物線①と円 ②で囲まれた部分の面積Sを求めよ。 (1)円と放物線が接する条件は, 例題 111 参照。 思考プロセス y (2) SS(ロロ)dxとしたいが, 円 ②はy=±√1-x+α となり,積分計算できない。 見方を変える A A Q PQ P Q P Q Action» 円と曲線で囲まれた部分の面積は,まず中心角を求めよ y+(y-α)2=1 例題 111 よって y2-(2a-1)y+α°-1 = 0 ... (3) 解 (1) ① ② より, xを消去すると 今回 ①と②が異なる2点で接するのは,③が正の重解をも つときである。 3 ③の判別式をDとすると D=0 P197 D={-(2a-1)}-4(α-1)= -4a +5 次数が低くなるようにx を消去する。 yを消去し て考えることもできる。 例題 111 〔別解 1)参照。 SID=0 かつ f(y) = y2-(2a-1)y+d-1 の軸の直線 54 れる 5 -4+5 = 0 より a = 4 3 9 このとき ③は v+ = 0 と 2 16 3 これは正の重解y= をもつから a= 4 3 (2) y= 4 ①に代入すると 3 x=± 2 ないよって、接点P,Qの座標は y 2a-1 y = > 0 から 2 αの値の範囲を求めても よい。 実際に 「正の」重解に なることを確かめる 181 √3 3 しな 2 √3 3 2 4 2 3 4 5-4 A 4 A √√3 3 S = 4 あり、②の中心をAとすると ∠PAQ = 120° したがって, 求める面積Sは x²)dx-(7.12. 60°- P √3 32 2 √3 x 2 ∠PAO=60° より ∠PAQ = 120° P 120° 1 Q · 1². sin 120° 360° 2 ① ② √3 π /3 2 3√3 π 3 4 4 ■267 放物線y = x2 ・・・ ①と円x2+(y-2 (1) 定数αの値を 1 2点で接する。

解決済み 回答数: 1