学年

教科

質問の種類

数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
数学 高校生

この問題の数列bnが等比数列となるための条件はの後の式が分かりません。どうして②の条件が 等比数列になるための条件なんですか?

0000 要 例題 47 分数形の漸化式 (2) 数列{an} が α1=4, an+1= 4an+8 an+6 で定められている。 16m= an-a an- とおく。 このとき, 数列 {bm} が等比数列となるようなα B (α>β) の値を求めよ。 (2) 数列{an} の一般項を求めよ。 本間も分数形の漸化式であるが, 誘導があるので,それに従って進めよう (1) bn+1= an+1-B an+1-a に与えられた漸化式を代入するとよい。 (2)(1)から,等比数列の問題に帰着される。 まず, 一般項6 を求める。 重要 46 485 1 出 章 ⑤種々の漸化式 ついて と変形できる 基本37 問題37 のように おき換えを利用 4an +8 辺のαを右辺 通分する。 0から。 答 (1) bn+1 an+1-B ・B an+6 = = an+1-a 4an+8 (4-β)an+8-6β a an+6 (4-a)an+8-6a_ (繁分数式) の扱い 分母, 分子に an+6を掛 8-6β an+ ( 4-B 4-B S = 4-a 8-6a ① ant 4-a けて整理する。 の分母を4-α 分 子を4-βでくくる。 ために, 数列 {bm} が等比数列となるための条件は )を断る。 から 8-6β 4-β =- -β, 8-6a 4-a D == a ② |_ ε bn = an-a an-β の右 島着。 よって,α,βは2次方程式8-6x=-x(4-x) の解であ り x2+2x-8=0を解いて x=2, -4 辺の分母分子をそれぞ れ比較。 (x-2)(x+4)=0 a>βから α=2, β=-4 (2) 4-β_ 4+4 4+4 - =4と ① ② から b+1=46 8-6β -=-β=4, 4-a 4-2 4-B 8-6α また b1= a+4 a1-2 =4 ゆえに b=44"-1=4" =-a=-2, 4-a 特性方 よって an+4 an-2 =4n ゆえに an= bn= 2(4"+2) 4"-1 an+4 an-2 (10+0 D-D D-T

解決済み 回答数: 1
数学 高校生

2番の問題がわかりません 微分係数の定義はしっかり理解したつもりですがわからないです h→0ならなんで-3→0が成り立つんですか?

重要例題 197 関数の極限値(2) ・・・ 係数決定・微分係数利用 =3を満たす定数a, b の値を求めよ。 x+ax+b X 等式 lim x-1 x→1 * f(a-3h)-f(a) lim をf'(α) を用いて表せ。 h→0 h 指針 (1)x1のとき, 分母x-10であるから,極限値が 存在するためには,分子 x+ax+b→0でなければなら ない (数学Ⅲの内容)。 一般に lim f(x) x-c g(x) =αかつlimg(x) = 0 なら limf(x)=0 xc XIC まず, 分子 → 0 から, aとbの関係式を導く。 次に,極限値を計算して, それが=3となる条件から (2)微分係数の定義のf(a)=limf(a+h)-f(a) h-0 h する。 00000 基本 次の関数 =1 (3) y= k (0) 極限値存在せず 必要条件 α, bの値を求める。 が使えるように、式を変化 (1) lim(x-1)= 0 であるから x→1 (th) 解答 ゆえに 1+α+6=0 よって b=-α-1 ...... ① (S) x2+ax+b x2+ax-a-1 lim(x2+ax+b)=0 x→1 必要条件。 注意 必要条件である b=-a-1 このとき lim =lim- x→1 x-1 x→1 x-1 (x-1)(x+α+1) x-1 =lim(x+a+1) 【チェ) mil成り立つような a,bの個 を代入して (極限値)=3か を求めているから x→1 解答 =lim x→1 a =a+2 a=1,b=-2 は必要十分条件である。 韓国) α+2=3から a=1 ①から b=-2 * (2)→0のとき, -3h0であるから I-X f(a+ロ)-f(a) lim h→0 f(a-3h)-f(a) lim- f(a+(-3h))-f(a) -=lim h→0 h h→0 -3h =f'(a)·(-3) I+ =-3f'(a) 別解 -3h=t とおくと, h0 のとき 0 であるから (与式)=lim f(att)-f(a) t-0 t=lim f(att)-f(a) - t-0 t (-3) 3 =-3f'(a) =(xxmil =f'(a) □は同じ式で, m 0のときロー □の部分を同じものにす るために, 形をしている。 → 10 とき3h0 だからといっ (与式)=f(a)として は誤り ! のような M

解決済み 回答数: 1
数学 高校生

(2)がわからないです 指針の置き換えを使うところまではわかりましたが、解答の与式からがなぜこうなるのかわかりません。

7 重要 例題 掛ける順序や組み合わせを工夫して展開 調 次の式を計算せよ。 (1)(x-1)(x-2)(x-3)(x-4)) (S) (2) (+) (2) (a+b+c)2+(b+c-a)+(c+a-b)'+(a+b-c)2x) (S-x)(+ (3) (a+2b+1)(a²-2ab+462-a-2b+1) <基本 7,8 前ページの例題同様, ポイントは掛ける順序や組み合わせを工夫すること。 (1) 多くの式の積は,掛ける組み合わせに注意。 ( 4つの1次式の定数項に注目する。 (-1)+(-4)=(-2)+(-3)=-5であるから (x-1)(x-4)×(x-2)(x-3)=(x2-5x+4)(x²-5x+6) ← 共通の式x25xが 出る。 (2)おき換えを利用して,計算をらくにする。 b+c=X, b-c=Yとおくと (与式)=(x+α)2+(X-α)+(a-Y)2+(a+1)2 (3)( )内の式を1つの文字αについて整理してみる。 CHART 多くの式の積掛ける順序・組み合わせの工夫 i (1) (与式)={(x-1)(x-4)}×{(x-2)(x-3)}= 4000)() ={(x2-5x)+4}×{(x2-5x)+6}8-14= 解答 (2) =(x2-5x)'+10(x2-5x)+24 psx25x=A とおくと =x-10x3+25x2+10x2-50x+24 (A+4)(A+6) =A2+10A+24 ===x10x+35x50x+24)}{ (2) (5x)={(b+c)+a}²+{(b+c)−a}² (pqA)-(pb+) くると、同じも (pat)-+{a_(b-c)}+{a+(b-c)}' par +°p°48= とおくと (3) 2+3=2{(b+c)²+a²}+2{a²+(b−c)²}+*p*48- =4a2+2{(b+c)'+(b-c)} 1+x-(x+y)²+(x−y)² - =4a2+2・2(62+c2) +dn-1) (d+ =4a²+462+4c2 =2(x2+y2) となるこ (3) (与式)= {a+(26+1)}{a²-(26+1)a+(462-26+1)}(a+●) __ =α+{(26+1)-(26+1)}a2 +{(462-26+1)-(26+1)^}a (a²-▲a+■ とみて展開。 (°) (+) 利用。 +(26+1)(45°-26+1) =α-6ba+(2b)+13 =α°+86-6ab+1 ◄(p+q)(p²−pq+q²)= 注意 問題文で与えら (与式)と書くこと

解決済み 回答数: 1
数学 高校生

この問題の別解の解き方なんですが n🟰17のとき2分の1n(n-1)は272になると思うんですけどこれがn-1軍め の最後の番目ということですよね?そしたら273番目がn軍目の1番最初になり そこから302番ー273番をしても15にならないと思うんですがどこの考え方が間違っ... 続きを読む

奇こ (2) 差 (3) 452 基本 例 29 群数列の基本 n個の数を含むように分けるとき (1) 第n群の最初の奇数を求めよ。 (3)301は第何群の何番目に並ぶ数か。 奇数の数列を1/3,5/7, 9, 11/13, 15, 17, 19|21, このように、第 00000 (2)第n群の総和を求めよ。 [類 昭和大 p.439 基本事項 もとの数列 群数列では、次のように目 指針 数列を ある規則によっていくつかの 組 (群) に分けて考えるとき,これを群 数列という。 区切り れる [規則 る 区切りをとると もとの数列の 目すること群の最初の数が 群数列 がみえてくる 数列でいくと 目が ① もと ↓ ② 第 数列の式に代 見則 の個数は次のようになる。 上の例題は 群第1第2 第3群・・・・・・・・ 1 | 3,57,9,11| 第 (n-1) 群 第n群 初項 (n-1) 18 n個 公差2の 個数 1個 2個 3個 等差数列 11n(n-1)個 11n(n-1)+1番目の奇数 (1) 第k群の個数に注目する。 第k群にk 個の数を含むから,第 (n-1) 群の末頃ま でに{1+2+3++(n-1)} 個の奇数が 第1群 (1) 1個 3 77 ある。 よって、第n群の最初の項は, 奇数の数列 1, 3, 5, の 第2群 第3群 第4群 13, 15, 17, 19 第5群 21, 59 2個 9, 11 3個 4個 {1+2+3+......+(n-1)+1)番目の項で ある。 {(1+2+3+4)+1} 番目 検討 右のように、初めのいくつかの群で実験をしてみるのも有効である。 (2)第n群を1つの数列として考えると、求める総和は, 初項が (1) で求めた奇数 差が 2 項数nの等差数列の和となる。 (3) 第n群の最初の項をan とし,まず an≦301<ant となるnを見つける。 nに具 体的な数を代入して目安をつけるとよい。 CHART 群数列 数列の規則性を見つけ、区切りを入れる ② 第群の初項・ 項数に注目 (1) n≧2 のとき,第1群から第 (n-1) 群までにある奇数 第 (n-1) 群を考えるか 解答 の個数は 1+2+3+(n-1)=1/12 (n-1)n ら,n≧2という条件が つく。 よって,第n群の最初の奇数は (n-1)n+1番目の+1」 を忘れるな!!

解決済み 回答数: 1
数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1