学年

教科

質問の種類

数学 高校生

帝京大学の数学の過去問です。 解説と答えをお願いしたいです。

[3] 下図のような三角形ABC と, その上を移動する3点P. Q. R がある。 点Pは点Aから点Bまで毎秒1の速さで移動する。点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは、点CからAまで毎秒 1/30 3点P. Q. R が同時に移動し始める。 (1) 三角形ABCの面積はアイウである。 (2) 移動し始めて1秒後。 PQ の長さは・ キ コサ 10. クケ エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後、三角形 PQR の面積は 三角形BPQの面積は チッ ソタ の速さで移動する。 ナニ スセ テト である。 である。 (4) (1) 変量xの標準偏差が4. 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B 得点 3 D E F G H I J 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は、 4点であった。 この修正を行うと、平均値は修正前から エオ点減少する。 更に、 生徒Gに加えて、 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと、データの分散は生徒Gと生徒E の得点の修正前とくらべてカ ただし カには①~②からいずれかを選び なさい。 ⑩ 増加する ⑩ 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(xーキク〉とする。 変量yの平均値は0. 分散は ケコ サシとなる。

回答募集中 回答数: 0
数学 高校生

(3)の0は、(2)では近似値?で13と16を使っているのになぜ(3)では分母は12にしているのですか?

ヒストグラムの選択 データを合わせた平均値や分散 ②のうち、複数の合計が20であるものは②だけであるので、A の 29 難易度 ★★ べて整数) をまとめたものである。 Aテストの得点を変量x, B テストの得点を変量で表し、 てあるクラスの加入の生徒の入テストとBテストの再度 (100点満点であり、 y 100円 90 yの平均値をそれぞれで表す。 ただし、表中の数値はすべて正確な値であり, 四捨五入され、 いないものとする。 80円 70 60 50 40 30 20 [[10] 生徒番号 1 *** X 62 *** y 57 ww 47 55 1220 A 61.0 B 20 合計 平均値 中央値 (1) A=アイウ, B=エオ」 (2) 変量xと変量yの散布図はキ www [x-x (x-x)² y-ỹ (-y)² (x-x)(y-y) 169.0 13.0 13.0 1.0 1.0 -6.0 0 1020304050 60 70 80 90 100 X 0.0 0.0 1.5 62.5 42.0 カ 42.5 である。 60 100 y 90 80 70 150808010 40 *** 36.0 3064.0 153.2 30 目標解答時間 20 に当てはまるものを、次の⑩~②のうちから一つ選べ。 ① 10] 3.0 0.0 0.0 -2.0 ... 9分 9.0 5014.0 250.7 90.5 0 102030405060 70 80 90 100 XC *** -18.0 -3468.0 -173.4 -44.0 y [100 90 80 70 60 50 得点は 40 30 20 10 ② 30 A, B. た。 ただ (1) 各 スト 10 20 30 40 50 60 70 80 90 100 X (3) このデータの特徴に関する説明のうち,正しいものはクである。 クに当てはまるものを、次の⑩~②のうちから一つ選べ。 ただし, 変量xと変量yの散布 キのときとする。 図は ⑩ Bテストの得点の標準偏差はAテストの得点の標準偏差の1.5倍より大きい。 ① Aテストの得点の最頻値は62.5点である。 ② 上の20人の生徒の得点のデータに, Aテストで90点, Bテストで80点をとった生徒1人 の得点のデータを加えたとき, xとyの相関係数は増加する。 (配点10) <公式・解法集 28 30 31 33 34 C 以 (2)

回答募集中 回答数: 0
数学 高校生

整数解を求める方法でこの三つの方法があると思うんですが、どの場合どれを使ったらいいのか見分ける方法はありますか?

460 第8章 整数の性質 例題 253 方程式の整数解 (1) 次の不定方程式の整数解を求めよ. (1) 2x-3y=21 [考え方 解答 Focus (②) 2x-38-212550305210形という関係があるに素であることを利用す。 (2) xとyの係数, 539=52×10+19 という関係がある。 (1) 2x-3y=21 より, 2x=3(y+7) ......① 2と3は互いに素であるから, xは3の倍数とな る. 撥数でかいの できたら、ユークリットやる したがって, kを整数として, x=3k とおける . これを①に代入すると, 2×3k=3(y+7) 2k=y+7 より y=2k-7 よって, 求める整数解は, (2) 52x+539y=19 x=3k, y=2k-7 (kは整数) (別解) 2x-3y=21 より, y=²x-71071081/ete yは整数より, xは3の倍数となる. したがって, x=3k (kは整数) とおけ, y=2k-7 よって, (2) 539-52x10+19 x=3k, y=2k-7 (kは整数) bibe これを与えられた方程式に代入すると, 52x+(52×10+19)y=19 NJIMACARO 倍数となり, んを整数として 整理すると 52(x+10y)=19(1-y) ...... ① 5219は互いに素であるから, x+10yは19の x+10y=19k, すなわち, x=19k-10y これを①に代入すると, 52×19k=19(1-y) 52k=1-yより y=-52k+1 よって, 求める整数解は, x=539k-10,y=-52k+1 (kは整数) 三習 次の不定方程式の整数解を求めよ. 253 (1) 2x-5y-25 * (税込) 2000 (2) 48x+491 ** 不定方程式 ax+by=c (aとbは互いに素) で, aまたはbとcが1より大きい公約数をもつとき, (xの式)=g(yの式) (pとgは互いに素) と変形する xが3の倍数でないとき yは整数にならない. 77 xとyの係数の大きい方 の数 539 を小さい方の数 52で割る. y=-52k+1 より, x=19k-10y =19k-10(-52k+1) =539k-10 181 74-10

回答募集中 回答数: 0