学年

教科

質問の種類

数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

144.2 「y=(x+1/2)^2-5/4」と書いたところから直で 「したがって...」と記述してもいいですか?

重要 例題 144 三角方程式の解の個数 aは定数とする。0に関する方程式 sin²0-cos0+α=0 について,次の問いに答 えよ。ただし、0≦0 <2π とする。 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をaの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, x²+x-1-a=0 (-1≤x≤1) WATC ① 定数αの入った方程式 f(x)=αの形に直してから処理に従い,定数aを右 辺に移項した x2+x-1=αの形で扱うと、関数 y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では x=-11であるxに対して0はそれぞれ1個, -1<x<1であるxに対して0は2個あることに注意する。 解答 COS0=x とおくと, 0≦0<2πから 方程式は (1-x2)-x+a=0 したがって x2+x-1=a 5 f(x)=x2+x-1 とすると = ( x + 1 1/2)²³ - 1²/1/2 (1) 求める条件は、-1≦x≦1の範囲で, 関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 よって、 右の図から ≦a≦1 5 (2) 関数y=f(x)のグラフと直線y=a の共有点を考えて 求める解の個数は次のようになる。 5 4 5 [1] a<-1, 1 <a のとき共有点はないから 0個 [2] a=-- -1≤x≤1 5 [3] <a<1のとき f(x)=(x+ のとき,x=- から 2個 =1/3から 2 1 2 <x<0 の範囲に共有点はそ [6]→ [5] - 練習 ④ 44 よって調べよ。 ただし, 0≦02m とする。 [4]/ [3]+ [2] この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 [6] - [5] [4] - [2]+ [4]+ グラフをかくため基本形に。 iy=f(x) ya XA 11 0 -1<x<- 1 2' れぞれ1個ずつあるから 4個 [4] α=1のとき、x=-1 から 3個 0 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから2個 [6] α=1のとき、x=1から1個 π 重要 143 1 y4 1 O 12 1x [Q 20 152-7605724 0に関する方程式 2cos20-sin0-a-1=0の解の個数を,定数aの値の範囲に Cp. 226 EX90, 91 [3] 225 144 24 三角関数の応用 4章 23

回答募集中 回答数: 0