学年

教科

質問の種類

数学 高校生

math この3つの使い分け方が分かりません😭 いざテストになってごっちゃになるとどうやって見分ければいいのですか??

絶対値を含む方程式・不等式 (基本) 基本例題 34 次の方程式・不等式を解け。 (1) |2-x|=4 (2) |2x+1|=7 w HART & SOLUTION 絶対値を含むときは、 場合分けをして絶対値記号をはずすのが基本であるが, この例題の (1)~(4) の右辺はすべて正の定数であるから,次のことを利用して解く。 c>0 のとき 方程式 |x|=c を満たすxの値は x=±c 不等式 |x|<eを満たすxの値の範囲は -c<x<e 不等式 |x|>cを満たすxの値の範囲は x<-cc<x MERCOL TEN 解答 (1) |2-x|=|x-2 であるから |x-2|=4 1318 x-2=±4 x-2=4 または x-2=-4を北 SHPG よって すなわち したがって x=6, -2 (2) |2x+1|=7から 2x+1=±7 すなわち 2x+1=7 または したがって x=3, -4 (3) |x-2<4 から -4<x-2<4 各辺に2を加えて -2<x<6 (4) |x-2|>4 から したがって -|x-2|>4. (3) |x-2<4 (4) |x-2>4 x-2<-4,4<x-2 x<-2,6x x-2|=4 2x+1=-7 -2 Tomas |x-2|<4. A 2 Xa p.55 基本事項 ||||=|A| x-2|=4 x-2=X とおくと |X|=4 よってX=±4 (81₂20314468 INFORMATION |b-α|は数直線上の2点A(a), B(b) 間の距離ととらえることができるから(p.41 参 照), |x-2|は2点A(2), P(x) 間の距離を表す。 よって, 等式 |x-2|=4 と例題 (3), (4) の不等式を満たすxの値や範囲は, 次の図のように表すことができる。 1250 TER WAR A (2) からの距離が4 6 2x=6 または 2x=-8 x-2<±4 は誤り! x-2> ±4 は誤り! za & LES 4 A (2) からの距離 A (2) からの距離 が4より大より小よりオ -x-2>4- DAT A(2) からの距離 18-01

回答募集中 回答数: 0
数学 高校生

33番の問題教えてほしいです、 右の写真は解答なんですけど、なんでeの次にle、loe、losといった順番で考えていくのかがわかりません。 eのつぎはelじゃないの?とかleの次はloじゃないの?と思ってしまいます。 誰か教えて下さるとありがたいです至急お願いします!!!

■18 d₂ (1) 文字列 earth は何番 考え方 辞書式に並べるときの順番はアルファベット順である。 4!個 解 (1) a ○○○○となる文字列は 次に, eah ○○となる文字列は 次に, ear ○○となる文字列は よって, 文字列 earth は 数学A 2!個 earht, earth 4! + 2! +2 = 28 (番目) (2) ○○○○○○○○ となる文字列は 3!=6 (個) ha ○○○ となる文字列は よって,ここまでに 48+6=54 (個) 並ぶ。 したがって, 55番目の文字列は heart たる文字列を 4! × 2 = 48 (個) 33e, 1, 0, s,vの5文字全部を使って辞書式に配列するとき, 次の問に答え | (1) 文字列 loves は何番目か。 (2) 88番目にあたる文字列を求めよ □ 34 5色の絵の具がある。 右の図の5個の部分を、この5色の絵の具 すべてを使って塗り分けたい。 塗り方は何通りあるか。 ただし, 回転 させたときに他の塗り方と一致する場合, それらの塗り方は同じもの と見なす。 37 † 例題 3 B IL あるか。 解 38 1の整 39 上

回答募集中 回答数: 0
数学 高校生

群数列 (2)どのように計算したら分子が39になるのか教えてください。

386 重要 例題 24 数列 群数列の応用 3 5 1 3 2'2'3'3'3'4'4'4'4'5' , 1 1 3 第1群 1個 (1) は第何項か。 (3) この数列の初項から第800頃までの和を求めよ。 (3) は,まず第n群のn個の分数の和を求める , 解答 11 31 3 51 3 5 71 12'23 3'34'4'4'45' のように群に分ける。 (1) は第8群の3番目の項である。 8 CHART & SOLUTION ** 群数列の応用 ① 数列の規則性を見つけ, 区切りを入れる ② 第群の最初の項や項数に注目 分母が変わるところで区切りを入れて群数列として考える。 (1), (2)は,まず第何群に含ま れるかを考える。 (2) では, 第800項が第n群に含まれるとして次のように不等式を立てる。 ½ k + 3 = 1/1/2 -・7・8+3=31 であるから k=1 群 第2群 第3群 個数 2個 3個 →第(n-1) 群の末頃までの項数 <800≦第n群の末頃までの項数 39 800-k=800- 11/139 2 k=1 5 |第(n-1) 群 (n-1) 個 39 (2) この数列の第 800 項を求めよ。 ゆえに, 求める和は k+ 1 7 (3)第n群のn個の分数の和は②2k-1) - 1/1/2 ■20401 第31項 3 5 + + ·+· k=1 40 40 40 1 1 (1 第1群 n 1 Joglopig s 1 006 n-l (2)第800項が第n群に含まれるとすると Σk <800 群までの項数は k=1 39 40 11 2k k=l よって (n-1)n<1600≦n(n+1) 39・40 <1600 ≦40・41 から, これを満たす自然数nはn=401600402から判断。 の不等式を解くので ・39・4020 であるから はなく見当をつける。 ←①でn=40, m=20 について • n² = n 00000 ·+· k=1 39 40 BELOOD ・第800項はここに含まれる 基本 23 第n群の番目の項は 2m-1 ① n ←①でn=8,2m-1=5 200 A=1 kは第7群までの項数 - Σ (2k-1) k=1 =2•½n(n+1)=n=n² 1から始まるn個の奇

回答募集中 回答数: 0
数学 高校生

n群が含む項数は2^n-1だから(2)2^k-1ではなく2^k-2ではないのですか?なぜこうなるのか教えてください。

384 基本例題 23 群数列の基本 1から順に自然数を並べて,下のように1個,2個 4個, うに群に分ける。 ただし,第n群が含む数の個数は2個である。 1/2, 3/4, 5, 6, 7/8, (1) 第5群の初めの数と終わりの数を求めよ。 (2) 第n群に含まれる数の総和を求めよ。 CHART & SOLUTION 群数列の基本 第群の最初の項や項数に注目 例題のように、群に分けられた数列を 群数 列という。 (1) 第4群の末頃までの項の総数をNと 区切りを入れる と分け方の規則 がみえてくる ...... k=1 解答 1+2+2+2=15 (1) 第4群の末項までの項の総数は 第5群の末頃までの項の総数は よって、 第5群の初めの数は 16, 終わりの数は31 1+2+2²+2³+2¹=31 (2) n≧2のとき,第 (n-1) 群の末頃までの項の総数は (-16) E 2²-1-2-1-1 n-1 2-1 =2n-1-1 ゆえに,第n群の初めの数は (2'-'-1)+1 すなわち 27-1 これは n=1のときにも成り立つ。 “ よって、第群に含まれる数の総和は,初項が2"-1, 公差 が 1 項数が27-1 の等差数列の和となるから 求める和は 1/1・2"-1(2・2"^'+(2"''-1)・1}=2"-2(3・2"--1) もとの数列 類 京都産大] となるよ 群数列 すると, 第5群の初めの数は, 自然数の列の第 (N+1) 項である。 また, 自然数の列の第 項の数はとなる。 (2) 連続する自然数の和であるから公差1の等差数列の和で,あとは初項と項数がわか ればよい。初項は (1) と同様にして求まる。 項数は問題文から,すぐにわかる。 区切りをとると もとの数列の規 則がみえてくる EAST C 重要 24 n-1 2-1 は,初項1,公比 A=1 2の等比数列の初項か ら第 (n-1)項までの和。 別解 第n群の終わりの数 は2-1であるから、私は 11/12.2°-12"-' + (2^-1 = 2²-²(3-2-¹-1) PRACTICE 23② 正の奇数の列を次のように,第n群が (2n-1) 個の奇数を含むように分ける。 1/3,5,79, 11. 13 15 1710 辞各 群 各 群

回答募集中 回答数: 0
数学 高校生

例題36 (2)解説の赤くなっている部分の意味がわからないので教えていただきたいです!

318 基本例題 36 組合せと確率 nは自然数とする。 白玉が5個、赤玉がn個入った袋の中から、 2個取り出す。 (1) n=3のとき, 白玉と赤玉を1個ずつ取り出す確率を求めよ。 (2) 白玉を2個取り出す確率が CHART & SOLUTION 確率の基本 N と αを求めて 場合の数Nやαの値を、組合せ の考え方で求める。 (1) 白玉5個、赤玉3個のすべてを区別し, 異なる8個の玉から同時に2個取り出すと考え 5のとき, nの値を求めよ。 18 解答 (1) 玉を同時に2個取り出す方法は 白玉と赤玉を1個ずつ取り出す方法は よって, 求める確率は ると, 取り出し方は C2通りある。 この中で, 白玉と赤玉を1個ずつ取り出す方法は 5C X 3C, 通り。 (2)(1) と同様に考えると,nについての方程式ができるから,これを解けばよい。 これが (2) 玉を同時に2個取り出す方法は (n+5)(n+4)_. n+5C2= 2・1 白玉を2個取り出す方法は よって, 白玉を2個取り出す確率は 10 -(n+5)(n+4) a N 15 5C1×3C1_5×3 8C2 28 28 2 (2) 赤玉を2個取り出す確率が であるから 18 整理すると (n+5)(n+4)=72 ゆえにn²+9n-52=0 nは自然数であるから n=4 2通り 5C XC1 通り (n+5)(n+4) (通り) 210 (通り) 20 (n+5)(n+4) 20 5 (n+5)(n+4) 18 12 p.312 基本事項 2 基本 よって (n-4)(n+13)=0 玉を同時に (1) 白玉5個 ①, ②.0. ④,⑤、赤玉3個 ②,③と番号をつけると 考える。 玉の合計はn+5個。 のとき, nの値を求めよ。 N ←a ↓ ←nについての方程式。 14 P RACTICE 36 ③ nは自然数とする。白玉がn個,赤玉が6個入った袋の中から、玉を同時に2個取り 出す。 (1) n=4 のとき, 白玉と赤玉を1個ずつ取り出す確率を求めよ。 (2) (3) C (2 (1 $

回答募集中 回答数: 0
数学 高校生

(3)のn大なりイコール2とありますがこれはなぜですか?

152 00000 重要 例題 95 漸化式と極限(はさみうち) [類 神戸大] 0<a<3, an+1=1+√1+an (n=1,2, 3, ......) によって定められる数列 {an} について,次の (1) (2) (3) を示せ。 (2) 3-an+1<. (1) 0<an<3 ART O SOLUTION 求めにくい極限 CHART はさみうちの原理を利用薫さら 漸化式を変形して, 一般項an をnの式で表すのは難しい。 各小問を次の方針で 考えてみよう。 (1) すべての自然数nについての成立を示すから, 数学的帰納法を利用。 0<a<3 を仮定する。 (2) 漸化式を用いて an+1 を an で表し, (1) の結果を利用する。 (3) (1), (2) で示した不等式を利用し, はさみうちの原理を使って, 数列 {3-an ..... の極限を求める。 ・・・・・!!! はさみうちの原理 すべての自然数nについて ann≦b のとき liman=limbn=α ならば limC=α →∞ 11-00 解答 (1) 0<a<3 ①とする。 [1] n=1のとき, 条件から0<a<3 が成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1 のとき <(3—an) 3-ax+1=3-(1+√1+ax)=2√1+ak ここで, 0<a<3 の仮定から 1 <1+an<4 ゆえに 1 <√1+a2 よって, 2-√1+αk >0 であるから 3-4k+1 0 すなわち k+1 <3 また,漸化式の形から明らかに 0<ak+1 (3) liman=3 ゆえに, 0 <ak+1 <3 となり, n=k+1 のときにも ① は成 り立つ。 [1], [2] から すべての自然数nに対して①が成り立つ。 ■3-an+1=3-(1+√1+an)=2√1+an (2−√1+an)(2+√1+an) _4-(1+an)_²1 2+√1+an 2+√1+an -(3-a) ( 141 基本事項 3 基本88 数学的帰納法で示す。 ◆n=k+1 のときも 0 < ak+1 <3 すなわち 0 < akt かつ ak+1 <3 が成り立つことを示す。 漸化式から。 分子を有理化。 3-An ここで(1)の結 2+√1+a, </ 3-an+1< <1/13(3-4) (2)の結果から、n=2のとき ② ③ から よって ここで, lim a<3-a<3(3-a-1<3) (3-2)+LE? 0<3-a₂ < (3) m (2) (3- 100 < (1) ²(3-as) がって n-1 liman=3 11-00 lim (3-an)=0 121-00 >3であるから (3-as) 72-00 2+√ltan (3-α) = 0 であるから a>b>0のとき 1 1</ -(3-On) 3 (3-0) 3-an-1 小さいから成り立つ</a 仮定すると, liman+1= α であることから, α=1+√1+α が成り立つ。 |これから,α-1=√1+α であり,この式の両辺を2乗して a²-3α=0 整理すると ゆえに,α(α-3)=0,α> 0 から, α=3であると予想でき る。これを.149のズームUPのようにグラフで確認して みると、 右の図のように極限値が3となることが確かめら </1/3 (3-an-²) はさみうちの原理 INFORMATION 複雑な漸化式で定められた数列の極限 /an+1=1+√1+an, 0<a<3 で定義される数列{an} について, lima =α であると 72-00 y 3 y=1+√1+x 21 153 10 a₁ y=x Az az 3 れる。 なお,この無理式で与えられた漸化式から一般項 α を求め, 直接 lima =3である ことを示すことは難しいので, lim (3-α)=0を示そうとして (2) の誘導の不等式が 与えられているのである。 2240 4章 10 数列の極限 PRACTICE・・・ 95 ④ u=a (0<a<1), an+1=-120'12/24%(n=1,2,3,..) によって定められる数 列{an} について,次の (1), (2) を示せ。 また, (3) を求めよ。 (1) 0<an<1 (2) r=a2のとき 1-ty≦r (1-an) (n=1, 2, 3, ......) と演習) [鳥取大) ヨチャート の紹介 本質を 全に定 に問 関大 参考書 題学信

回答募集中 回答数: 0
数学 高校生

3番の問題は和の公式を使わなければ場合分けはしなくて良いのですか?

(2) 初項が2,公比が 3, 和が242である等比数列の項数を求めよ。 (1) 公比が3,初項から第6項までの和が728 の等比数列の初項を求めよ。 和をSとすると, S3 = 3, S6=27 であった。 このときa, rの値を求めよ。 [(3) 大阪工大] p.365 基本事項 3 基本11 (3) 初項a,公比rがともに実数の等比数列について,初項から第n項までの CHART & SOLUTION 等比数列の決定 まず初項 αと公比r (3) の値が与えられていないので, 和の公式を使うとき,r=1 と r≠1 に分けて考える (1),(2),(3) 和が与えられた問題では, 項数nについても考える。 必要がある。 開 (1) 初項をaとすると,条件から よって, α(1-729)=4・728 から r≠1のとき, S3=3 から a{1-(−3)} 1-(-3)。 (2) 項数をnとすると,条件から ゆえに 3-1=242 したがって, 項数は n=5 (3) r=1のとき S3=3a, S6=6a 3a=3,6a=27 を同時に満たすαは存在しないから不適。 3101534 PRACT LEDS a=-4 2(3-1) 3-1 a = すなわち a(r³--1) r-1 -=728 -=242 =3 .P¶ "(x + a(rº_1)__LA また, S6=27 から = 27 19 7-1-17 E r°−1=(r3)2−1=(n-1)(n+1) であるから、②より 3"=35 „§ (= a(r³−1).(√³+1)=27 r-1 これに ① を代入すると 3 (3+1)=27で解くと、 よって r3=8 rは実数であるから 3 r=2, ① から 7 ...... (1) 公比 - 3 項数 n=6の等比数列の和が 728 である。 Sn=a(²-1) r-1 ← 243 = 35 等比数列の和の公式を 使うときは,まず,公比 rが1であるかどうか を調べる。 St. a(³-1) r-1 369 の 17a=3 -·(³+1)=27 に3を代入。

回答募集中 回答数: 0
数学 高校生

整数解や自然数解を求めるときに青丸で囲ってあるような考え方で書いてある時と、ユークリッドの互除法で書いてある時があるのですがどういうときに青丸で囲ってあるような考え方ができるとか決まってるのでしょうか?

0 2 し xが2桁で最小である組は (x,y)=(^^) である。 等式2x+3y=33 を満たす自然数x,yの組は CHART SOLUTION 方程式の自然数解 不等式で範囲を絞り込む ・・・・・・図 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ⑩において, y ≧1 であるから 11-y≤10 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 x = 3, 6, 9,12,15 ②③から ゆえに, 等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解 x=0, y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ①②から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから、①のすべての整数解は x=3k, y=-2k+11 (kは整数) 「x, y が自然数」すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利 用して,最初から x,yの値の範囲を絞り込む とよい。 別解 基本例題122 と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 とされる。 x≧1,y≧1 であるから 3k≧1, -2k+111 よって -≤k≤5 んは整数であるから k=1, 2,3,4,5 ゆえに, ① を満たす自然数x,yの組は『5組 PRACTICE... 124 ③ ■ 組ある。 それらのうち [福岡工大] 5組 (x, y)=(112, 3) ① の整数解の1つ (2) xが2桁で最小となるのはk=4 のときであり, このときの組は (x, y)=(12, 23) (2) |基本 122 満たす自然数x,yの組を求めよ。 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 ←-2k≧-10 から k≤5 不等号の向きに注意。 xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法

回答募集中 回答数: 0
数学 高校生

例題78 解説で、赤くなっている部分の意味がわからないので教えていただきたいです!

本 例題 78 実数解をもつ条件 (1) 00000 (1) 2次方程式x+2k-1)x+k-3k-10 が実数解をもつように,定数 kの値の範囲を定めよ。 (2) 2次方程式 3x² +8x+k=0が重解をもつように、 定数kの値を定め, そのときの重解を求めよ。 p.129 基本事項 2 CHART & SOLUTION 2次方程式の実数解の個数と判別式の符号の関係 異なる2つの実数解をもつ ⇔D>0 ただ1つの実数解 (重解) をもつD=0 実数解をもたない ⇒D<0 (1) 単に「実数解をもつ」 条件は 「D>0 または D=0」 すなわち D≧0 D (2) xの係数が6=26′のとき, D=(26')²-4ac=4(b^2-ac) から Dと1/4の符号は一致するから、Dの代わりに 1/2の符号を調べてもよい。 また, ax2+bx+c=0が重解をもつとき,その重解は b 2a 空 (1) 2次方程式の判別式をDとすると D=(2k-1)²-4・1・(k²-3k-1)=8k+5 2次方程式が実数解をもつための条件は D≧0であるから 8k+5≥0 よって 5 よって k≧- 8 (2) 2次方程式の判別式をDとすると D P=4² -=42-3・k=16-3k 2次方程式が重解をもつための条件は D=0 であるから 16-3k=0 16 3 k=- また、重解は x= 実数解 をもつ 8 2.3 x=1 3 D≧0 =62²-ac ← (2k-1)2 -4(k²-3k-1) =4k²-4k+1 -4k²+12k +4 =8k+5 D = 0 のときの重解は b 2a x=- PRACTICE 78② (1) 2次方程式2x2+3x+k=0 の実数解の個数を調べよ。 (2) 2次方程式 4x²+2(a-1)x+1-α=0が重解をもつように,定数aの値を定め, そのときの重解を求めよ。 3章 2次方程式

回答募集中 回答数: 0