数学
高校生

整数解や自然数解を求めるときに青丸で囲ってあるような考え方で書いてある時と、ユークリッドの互除法で書いてある時があるのですがどういうときに青丸で囲ってあるような考え方ができるとか決まってるのでしょうか?

0 2 し xが2桁で最小である組は (x,y)=(^^) である。 等式2x+3y=33 を満たす自然数x,yの組は CHART SOLUTION 方程式の自然数解 不等式で範囲を絞り込む ・・・・・・図 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ⑩において, y ≧1 であるから 11-y≤10 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 x = 3, 6, 9,12,15 ②③から ゆえに, 等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解 x=0, y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ①②から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから、①のすべての整数解は x=3k, y=-2k+11 (kは整数) 「x, y が自然数」すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利 用して,最初から x,yの値の範囲を絞り込む とよい。 別解 基本例題122 と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 とされる。 x≧1,y≧1 であるから 3k≧1, -2k+111 よって -≤k≤5 んは整数であるから k=1, 2,3,4,5 ゆえに, ① を満たす自然数x,yの組は『5組 PRACTICE... 124 ③ ■ 組ある。 それらのうち [福岡工大] 5組 (x, y)=(112, 3) ① の整数解の1つ (2) xが2桁で最小となるのはk=4 のときであり, このときの組は (x, y)=(12, 23) (2) |基本 122 満たす自然数x,yの組を求めよ。 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 ←-2k≧-10 から k≤5 不等号の向きに注意。 xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法
整数と整式、有理数と有理式の類似 整数

回答

まだ回答がありません。

疑問は解決しましたか?