学年

教科

質問の種類

数学 高校生

上から5行目で、B^2>c^2➕a^2でとけないのか? よろしくお願いします🙇‍♀️

見学院大) [ 155 鈍角と とにな 等式 って 重要 例題 155 三角形の最大辺と最大角 00000 き、この三角形の最大の角の大きさを求めよ。 x>1とする。 三角形の3辺の長さがそれぞれ1.2x+1+x+1であると ■ 日本工大】 153, 154 三角形の最大の角は、最大の辺に対する角であるから、3辺の大小を調べる。 このとき、x>1を満たす適当な値を代入して、大小の目安をつけるとよい。 x-1=3, 2x+1=5, x²+x+1=7 例えば、x=2とすると +x+1が最大であるという予想がつく。 となるから、 三角形の成立条件 b-c| <a<b+c で確認することを忘れてはならない。 なお, x1, 2x+1, x²+x+1が三角形の3辺の長さとなることを CHARI 文字式の大小 数を代入して大小の目安をつける x2+x+1-(x2-1)=x+2>0 x2+x+1-(2x+1)=x2-x=x(x-1) > 0 よって, 3辺の長さを x2-1, 2x+1, x2+x+1とする三角形が 存在するための条件は x>1のとき ~_x³²Fx+1 ≤ (x²-1)+(2x+1) 整理すると x>1 したがって, x>1のとき三角形が存在する。 また、長さがx2+x+1 である辺が最大の辺であるからこの 辺に対する角が最大の内角である。 この角を0とすると, 余弦定理により cos0= = したがって (x²−1)²+(2x+1)² − (x²+x+1)² 2(x2-1)(2x+1) ¸xª−2x²+1+4x²+4x+1−(x²+x²+1+2x³+2x+2x²) 2(x2-1)(2x+1) -2x3-x2+2x+1 2(x2-1)(2x+1) (x2-1)(2x+1) 2(x2-1)(2x+1) 0=120° == = 2x3+x2-2x-1 2(x2-1)(2x+1) 1 2 x²+x+1が最大という予 想から、次のことを示す。 x2+x+1>x-1 x²+x+1>2x+1 三角形の成立条件 lb-cl <a <b+c は、 が最大辺のとき a<b+c だけでよい。 r-1. e 241 2x+1 tx+1 ◄2x³+x²-2x-1 =x2(2x+1)-(2x+1) =(x-1)(2x+1) 18

回答募集中 回答数: 0
数学 高校生

下から9行目で、3いこーるだいなりにしていますが、イコールつけると、AとBが同じ角度になって、鈍角が2つになるんじゃないんですか?

240 CTT S 基本 例題 154 三角形の成立条件, 鈍角三角形となるための条件 AB=2, BC=x, CA=3である△ABC がある。 (1) xのとりうる値の範囲を求めよ。 (2) △ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 P.230 基本事項 3, [4] tokie 指針 (1) 三角形の成立条件 [6-c| <a<b+c を利用する。 ここでは、3-21<x<3+2の形で使うと計算が簡単になる。 (2) 純角三角形において, 最大の角以外の角はすべて鋭角であるから、最大の角が なる場合を考えればよい (三角形の辺と角の大小関係より, 最大の辺を考えることに る)。そこで、最大辺の長さが3かxかで場合分けをする。 例えば CA(=3) が最大辺とすると, ∠Bが鈍角⇔ cos B <0⇔ 21 90%4+ -<0⇒ c²+a²-b² <0 ER 「となり! bc+α² が導かれる。 これにb= 3,c=2, α=x を代入して,xの2次不等 2703 が得られる。 c²+a²-b² 2ca 解答 (1) 条件から 3-2<x<3+2 よって 1<x<5 TV: TV-Onie: 8 (2) [1] 1<x<3のとき, 最大辺の長さは3であるから, その 対角が90°より大きいとき鈍角三角形になる。 ゆえに 32>22+x2 すなわち x-5<0 よって ゆえに (x+√5)(x-√√5) <0_____* -√5<x<√5 ELS 1<x<3との共通範囲は 1<x<√5 [2] 3≦x<5のとき, 最大辺の長さはxであるから, その対 角が 90°より大きいとき鈍角三角形になる。 レー ゆえに x2>22+32 ( すなわち x²-13>0 よって ゆえに 3≦x<5との共通範囲は [1], [2] を合わせて (x+√13)(x-√13) > 0 x<-√13, √13<x-1-(5)-1 √13 <x<5 1<x<√5,√13 <x<5 [参考] 鋭角三角形である条件を求める際にも,最大の角に着目し, 最大の角が鋭角となる場合を考えればよい。 練習 154 (1) xのとりうる値の範囲を求めよ。 AB=x, BC=x-3,CA=x+3である△ABCがある。 (2) △ABCが鋭角三角形であるとき、xの値の範囲 |x-3|<2<x+3または |2x | <3 <2+xを解いて x の値の範囲を求めても いが、面倒。 [1] LIRICA *C B>90°⇔ AC2>AB²+BC [2] B 2 A 3 B A>90° BC²>AB²+AC 191 547 A 重要 例題 15 x>1 とする。 三 き、この三角形の 指針 三角形の最大 このとき x 例えば,x= x2+x+1が なお, x2-1 三角形の成 EBI mok+1 CHART 文 解答 x>1 のとき よって, 3辺の長 存在するための 整理すると したがって, x また, 長さがx 辺に対する角が この角を0とす (x² COS A= ⅡI 2 || 41 したがって 三角 ③155 (1)

回答募集中 回答数: 0
数学 高校生

⑴でHに達する行き方が6通りだと求めて、全体と行き方が何通りあるか求めて確率を出すことはできますか?

662 第7章確 (1)の解 33 右の図は1辺の長さが2の正方形 OBHF を4等分 したものである。 点Oから出発して, 線分に沿って 移動する動点Pを考える。 Pは各点 O, A, B, C, D, E, F, G において、 直前に通過した線分を除 いて等確率で次の点に向かって移動する。 ただし, Hに到達するか一度通過した点に到達したらそこで 移動は終わりとする。 次の確率を求めよ. (1) 動点Pが移動距離4でHに到達する確率 (2) 動点Pが移動距離6でHに到達する確率 <考え方> 各点における次の点に向かう確率が異なることに注意する. (i) O, A, C, E, G XX 次に向かう点は 2方向 D. 2 0 A 次の点に行く確率・ 2 B アの場合の確率は, イの場合の確率は, (i) 点D <(1) の考え方> 点から点Hまでの最短距離は4だか ら,進む方向は右か上のみで, 下や左 0000 に進むことはない. 次に向かう点は 3方向 1.1 ・・1・・ 22 2 ウ エ オはイと同様で 1 1 1 1 2 2 3 2 E+ 次の点に行く確率 + PA D4 0011 G La for 動点Pが点Oを出発して, 移動距離4で点Hに到達する のは、次のいずれかである. CORAL 2001 ⑦ O→A→B→C→H (イ) O→A→D→C→H ウ (エ) O→A→D→G→H オ O→E→D→G→H O→E→D→C→H O→E→F→G→H 8 1 24 O カはアと同様で 24' 5 よって、求める確率は1/3×2+ 12/1×4=1/28 -X4=- CA 1 3 18 -1- THE F D A (04 横浜市立大) (iii) AB, F 次に向かう点は 1方向 1 A 次の点に行く確率1 1 2 B 樹形図で考えると, _B→C→H DECH →G→H C-H EDGH "F→G→H O→A→B→C→H O→A→D→C→H 1. 1/11/11/ 32 20

回答募集中 回答数: 0