学年

教科

質問の種類

数学 高校生

KP②-5 ソタについてなのですが、確率変数Wは卵1個の重さを表しているのは理解してるのですが、2枚目の写真の黄色のところと緑のところが同じ?置き換え?られてる理由がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

数学II, 数学 B 数学 C (2)養鶏場Kで収穫される卵1個の重さ (単位はg) を表す確率変数をWとする。 Wは母平均が m, 母分散が の正規分布に従うとする。 ただし,とは正の 実数である。 確率変数を Z= 0 W-mで定めると,Zは平均 サ,標準偏差 シ の正規分布に従う。 EXX -1≦Z≦1 となる確率は0. スセであるから,養鶏場Kで収穫された卵か ら1個を無作為に抽出するとき,その卵の重さw タ 5 となる確率は0. スセであることがわかる。 20 平均 m に対する信頼度 95%の信頼区間は 1である。(64.0.14) 母平均m を推定してみよう。 養鶏場K で収穫された卵から400個を無作為に 抽出し, 重さを調べた結果, 標本平均は 64.0g, 標本の標準偏差は5.0gであっ た。 標本の大きさが十分に大きいときには, 母標準偏差の代わりに標本の標準偏 差を用いてよいことが知られている。 標本の大きさ400は十分に大きいので母 チ タ の解答群(同じものを繰り返し選んでもよい。) 0.87 0.95 ①m+o ②m+20 -0 ④ m-o m-20 チ については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 61.1mm 66.9 61.8mm 66.2 ④ 63.5≧m≦ 65.9 ① 61.8mm 64.5 62.7mm 64.5 ⑤ 63.5mm≦64.5 (数学II, 数学B, 数学C第5問は次ページに続

未解決 回答数: 2
数学 高校生

かっこ2のアで1-tとtを解答と逆にしてもいいと思いやってたのですが答えが合わないので計算途中をお願いしたいですよ

する(s, t |基本例題 34 直線のベクトル方程式, 媒介変数表示 00000 (1) 3点A(a),B(b),C(c) を頂点とする △ABC がある。 辺AB を2:3に内 分する点を通り,辺 ACに平行な直線のベクトル方程式を求めよ。 指針 2点(3,2) (2,-4) を通る直線の方程式を媒介変数を用いて表せ。 (イ)(ア)で求めた直線の方程式を, tを消去した形で表せ。 (1)点A(a)を通り,方向ベクトルの直線のベクトル方程式は p=a+td 40 67 1 p.65 基本事項 1 章 ここでは,Mを定点, AC を方向ベクトルとみて、この式にあてはめる (結果はa, もこおよび媒介変数を含む式となる)。 (2)2点A(a),B(b) を通る直線のベクトル方程式は b=(1-t)a+tb D=(x,y), a= (-3, 2) = (2,-4) とみて,これを成分で表す。 (1)直線上の任意の点をP(D) とし, tを媒介変数とする。 3a+26 A(a) ⑤ ベクトル方程式 解答 M (m) とすると m= P(p) 5 2 辺 ACに平行な直線の方向ベクトルはACであるから b=m+tAC=30+26+t(ca) M(m) 3 c-a t=0 B(b) C(c) 5 t=19 整理して b = (1/2/3 - ta1+1/26+1ctは媒介変数) 3a+26 +t(c-a) 5 でもよい。 LS) (2)2点(-322-4 を通る直線上の任意の点 の座標 (x,y) とすると (x,y)=(1-t)(-3, 2)+t(2,-4) =(-3(1-t)+2t, 2(1-t)-4t) =(5t-3, -6t+2) P(x, y), A(-3, 2), B(2,-4) とすると, OP= (1-t)OA+tOB と同じこと (Oは原点)。 各成分を比較。 x=5t-3 よって (tは媒介変数) ② とする。x=31 ① ×6+② ×5 から 6x+5y+8=0 tを消去。 ly=-6t+2 (イ) x=5t-3. ①,y=-6t+2 参考 数学IIの問題として, (2) を解くと, 2点 (-3, 2) (2, -4) を通る直線の方程式! -4-2 2+3 y-2= (x+3) から 6x+5y+8=0 練習 (1) △ABCにおいて, A(a),B(b),C(c)とする。 M を辺BC の中点とする 34 直線AMのベクトル方程式を求めよ。 博介変数で表された式, tを消去

回答募集中 回答数: 0
数学 高校生

⑴の(iii)で(1/3)^4としたらダメなんですか?

第3問 (選択問題)(配点 20) 複数人がそれぞれプレゼントを一つずつ持ち寄り、 交換会を開く。 ただし, ブ レゼントはすべて異なるとする。 プレゼントの交換は次の手順で行う。 手順 外見が同じ袋を人数分用意し, 各袋にプレゼントを一つずつ入れたうえ で、各参加者に袋を一つずつでたらめに配る。 各参加者は配られた袋の中 のプレゼントを受け取る。 交換の結果、1人でも自分の持参したプレゼントを受け取った場合は,交換を やり直す。 そして、 全員が自分以外の人の持参したプレゼントを受け取ったとこ ろで交換会を終了する。 (1) 2人または3人で交換会を開く場合を考える。 (i) 2人で交換会を開く場合、 1回目の交換で交換会が終了するプレゼントの 受け取り方は ア 通りある。 したがって, 1回目の交換で交換会が終了 イ する確率は である。 ウ (i) 3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの エ 通りある。 したがって, 1回目の交換で交換会が終了 オ する確率は である。 カ (面) 3人で交換会を開く場合, 4回以下の交換で交換会が終了する確率は キグ である。 ケコ (数学Ⅰ・数学A第3両は次ページに続く。)

未解決 回答数: 1