学年

教科

質問の種類

数学 高校生

(2)の問題なんですが、3枚目の自分で解いた解答のやり方が解説にのっていないので、3枚目の私の解答はどこから間違っているか教えてくださるとありがたいです。宜しくお願いいたします🙇

B1-68 (86) 第1章 数 列 例 B1.41 隣接3項間の漸化式(1) 考え方 次のように定義される数列{an} の一般項 am を求めよ。 (1) a=1, a2=2, an 2-2an+1-150=0 (2) a1=3, a2=5, an+2-30m+1+2a=0 (A) 特性方程式の解α, β が α β となる場合 (p. B1-67) である. (1) An+2-2+1-150=0.・・・ ① が ax +2aaμ+1=βan+1 aan) .....② たとする. ②より, an+2-(a+β)an++αβam= 0 |a=5 [α = -3 これより, α+β=2, aβ=-15 だから, lβ=5 または \B=-3 よって、②より 解答 とも Jax+2+3am+1=5 (an+1+3a) lan+2-5an+1=-3(an+1-5am) これより,一般項 α を求めればよい. (2)(A) aβにおいて,とくに α=1 となる特別な場合である。 つまり, an+2-3a+1+2a=0 は, an+2-An+1=B(An+1-an) となり, 数列{ant-am} は {an} の階差数列である。 mi (1)と同様に解くこともできるが,ここでは階差数列の 考え方を使って解いてみよう. ~20x150=0 (1) authen より となる. ......① an+2+3an+1=5 (an+1+3an) lan+2-50+1=-3 (a+1-5a) ②より, 数列 {am+1+3am} は, ③ {a} の階 {anta ① より,-2F wwww (x+3)(x-5)= よって, x=-1 α=-3,β=5 α=5,β=-3 {an+1+3a 初項 a2+3a1=2+3・1=5 公比 5 の等比数列であるから, an+1+3a=5・5"'=5" …④ a2+3a」(n=10) ③より, 数列 {an+1-5am} は, 初項 a2-5a=2-5・1=-3 公比3 の等比数列であるから, a,+1-5a= (-3)(-3)"'=(-3)"...... ⑤ ④ ⑤ より 3a-(-5am)=5"-(-3)" 8a=5"-(-3)" ④ ⑤から 去する. よって、 求める一般項 α は, _5"-(-3)" an= 8

解決済み 回答数: 1