学年

教科

質問の種類

数学 高校生

(2)の解答にあるaはどこから来たのか教えて欲しいです!! あと、剰余たの定理でこのページのポイントにある 「f(x)をg(x)h(x)でわったときのあまりをR(x)とする」剰余の定理のどういう時に使えるか教えて欲しいです!

第2章 基礎問 44 第2章 複素数と万住式 26 剰余の定理 (III) 1/2 (1) 整式P(x) をæ-1, x-2, x-3でわったときの余りが、そ れぞれ6, 14, 26 であるとき,P(x) を (x-1)(x-2) (x-3)で わったときの余りを求めよ. (2) 整式P(x) を (x-1) でわると, 2x-1余り, x-2でわると 5余るとき,P(z) を (x-1)(x-2)でわった余りを求めよ。 精講 (1) 25 で考えたように、余りはax2+bx+cとおけます。 あとに a, b, c に関する連立方程式を作れば終わりです。 しかし、3文字の連立方程式は解くのがそれなりにたいへんです そこで,25の考え方を利用すると負担が軽くなります。 (2)余りをax+bx+c とおいてもP (1) P(2) しかないので, 未知数 3つ 等式2つの形になり, 答はでてきません. 解答 (1) 求める余りは ax2+bx+c とおけるので, 128 -2a-2b+26=6 -24-6+26=14 [a+6-10=0 l2a+b-12=0 .. a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 45 S ( 注 (別解)のポイントの部分は,P(3)=R(3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR(x) (2次以下の整式) と おくと,P(x) = (x-1)(x-2)Q(x) +R(z) と表せる. ところが,P(x) は (x-1)2でわると2-1余るので,R(x) も (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. .. P(x)=(x-1)(x-2)Q(x)+α(x-1)'+2x-1 P(2) =5 だから, α+3=5 a=2 よって、 求める余りは, 2(x-1)'+2x-1 すなわち, 2x²-2x+1 次式でわった余り P(x)=(x-1)(x-2)(x-3)Q(x)+ax²+bx+c は2次以下 と表せる. P(1)=6,P(2)=14,P(3) = 26 だから, [a+b+c=6 4a+26+c=14 ・・・① ....2 連立方程式を作る ポイント f(x)をg(x)h(x)でわったときの余りをR(z) とす ると f(x)をg(x)でわった余りと R(x)をg(r)でわった余りは等しい。 (h(x) についても同様のことがいえる) 9a+3b+c=26 ......

解決済み 回答数: 1
数学 高校生

この問題なんですかま、 なぜⅱのとこよで整数Nは5の倍数となるのですか? よく分からなくて、もし良ければ全体的に解説して頂きたいです。めんどくさいこと言ってるとは思うんですがお願いします。🙇‍♀️

例題 2 整数の除法と余りによる分類 499 249 余りによる場合分け(2) (風のお問合 **** npを任意の自然数とするとき,n と n+4は一の位が一致することを 示せ. 2000 考え方 2つの自然数の一の位が一致するということは, 解答 2つの自然数の差を考えると一の位は「0」になる. つまり、2つの自然数の差は10の倍数になるということである. 10の倍数であることを示すには、2の倍数かつ5の倍数であることを示せばよい. N=np+4_n とおくと, b N=n(n-1)=(n-1)n(n+1) (n2+1) n(n+1) は連続する2つの自然数の積であるから, 整数Nは2の倍数である. 自然数nを5で割ったとき,余りは0,1,2,3,4のいずれかであるから, 自然 数は5k,5k+1,5k+2,5k+35k+4(kは整数)のいずれかの形で表せる。 (bom)a= ここで, mod 12) 5k+3=5(k+1)-2より,5で割って3余る整数は5k-2としてよく, (mbo5k+4=5(k+1)-1より,5で割って4余る整数は5k-1としてよい. (i) n=5k のとき,整数Nは5の倍数 (ii)n=5k±1 のとき,n+1=5k (複号同順) となり, 整数 N は5の倍数は正 (n=5k±2 のとき, n2+1=(5k±2)2+1=5(5k±4k+1) (複号同順)より, ①より 整数Nは5の倍数 (bom) 1- Focus (i)~ (iii)より, すべての自然数nに対して, 整数Nは5の倍数である. したがって、整数Nは2の倍数かつ5の倍数であり, 2と5は互いに素であるから,Nは10の倍数である. よって,n+4は10の倍数より, n+4 と n の一の位の数字は一致する.d10) 求める 2つの自然数の一の位の数字が一致する ⇔ 2つの自然数の差が10の倍数 注 >例題249は、整数を累乗した数の一の位の数の周期性を示している。 たとえば,』を自然数としての一の位の数をf (p) で表すと, f(1)=7,f(2)=9,f(3)=3,f(4)=1,f(5)=7,f(6)=9,f(7)=3,f(8)=1, (例題251(2 する。 のは同じになる. このゆりがどのよう

解決済み 回答数: 1