学年

教科

質問の種類

数学 高校生

106.3 記述これでもいいですか?

472 基本例題106 約数の個数と総和 (①) 360 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 p.468 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pare…・・・・・ となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... EO (1+p+p²+...+pª)(1+g+q²+···+q°)(1+r+r²+··+²) ******** (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2°•g.xc...... (a≧1,b≧0,c≧0, ...;g,r, ··· は奇数の素数 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 と表され, その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rº)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 151 53 であるから, nは15-11-1 または5-13-1 の形。 解答 (1) 360=2.32.5であるから,正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 00000 ←p,g,r, ….. は素数。 14 pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,q,r は素数 積の法則を利用しても求め られる (p.309 参照)。 (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22-3)"=22"• 3" であるから, 12" の正の約数が28個(ab)"=a"b", (q""="" であるための条件は (2n+1)(n+1)=28 このところを2mmとし 偶数は201 みである。 よって 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・1=5・3) であるから,nは か pg²(p, g は異なる素数) または の形で表される。 nは56の倍数であり, 56=2.7であるから, nは²の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24.72=784 たら誤り。 <p=2,g=7 15-1515-11-1 5・3から D-13-1 (1) 756 の正の約数の個数と、正の約数のうち奇数であるものの総和を認めた 練習 2 106 (2) 正の約数の個数が3で,正の約数の総和が57 となる自然数nを求めよ。 (3) 300 以下の自然数のうち,正の約数が9個である数の個数を求めよ。 CP. 484 EXTO 指針 n CH 解 √n²+ 平方し m, n 40の糸 また、 解は順 したが 検討 上の 1つ 答え ま の自 は, 例え が決 ある とい ため、 しか る。 一致 10 練習 107

回答募集中 回答数: 0
数学 高校生

至急お願いします! 数Bの数列の問題です。 例文のS1=... のところが、何故分子が(pn-1)-(pm+1)+1 になるのか分かりません。 ですが、問題全体の解説をしていただけると助かります 一緒に練習問題も教えてくださいm(_ _)m 早めに教えていただけると幸いです... 続きを読む

0000 重要 例題 9 既約分数の和 pは素数m,n は正の整数でm<nとする。 mとnの間にあって, pを分母と する既約分数の総和を求めよ。 基本 6,7 指針 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 8 9 7. 7. 7. 10. 12. 13. 14. 11 3'3' 3' 3'3'3 3 であり,既約分数の和は(*)の和から, 3と4を引くことで求められる。 このように、全体の和から整数の和を除く方針 で求める。 まず,g を自然数として,<_<n を満たす 解答する。 pm<g <pnであるから g_pm+1 pm+2 よって か か これらの和を とすると S₁= ①のうち, =1+11-0 g=pm+1,pm+2,......, pn-1 (pn-1)-(pm+1)+1 2 pn-pm-1 2 = p (m+n) が整数となるものは これらの和を S2 とすると S2= _=m+1, m+2, ….…, p n-m-1 2 pm+1 Þ 2 S= pn-pm-¹ (m+n) - ² 2 pn-1 か n-1 (n-1)-(m+1)+1{(m+1)+(n-1)} 2 -1/12 (m+n)(n-m) (p-1) L (*)は等差数列であり,3と4は 2と5の間にある整数である。 + 初項川未 n-m-1 2 (m+n){(n_m)p−(n_m)} -を求め · pn-1) 0>1+nd -(m+n) ゆえに, 求める総和をSとすると, S=S-S2 であるから -(m+n) 「mとnの間」であるか ら、 両端のmとnは含 まない。 pm+1 か の等差数列。 ① 初項 S= 2 ((-)-(1-x) Fuck Sin- 公差 1 -n(a+l) mとnの間にある整数。 ◄ S₁ ==—= n(a+l) (全体の和) (整数の和)

未解決 回答数: 1
数学 高校生

(1)の解説3行目~ 偶数であるものの総和で3と5が入っているのはなぜですか?

00000 基本例題 106 約数の個数と総和 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 p.468 基本事項 (3) 56の倍数で、正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解がN=pq…..… となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EONORA (1+p+p²+.+pª)(1+g+q²+···+q°)(1+r+r³+ + ²)..... p. q. 7. ・は素数。 偶数は2の 2.gy...... (a≧1,6 ≧0,c≧0... ,, …. は奇数の素数 素数のうち、 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは i と表され, 1+ の部分がない。 その総和は (2+2²++2ª)(1+g+g²+ +g³)(1+r+r²+...+)... を利用し,の方程式を作る。 (2) ****** (3) 正の約数の個数 15を積で表し、 指数となる α, b, ...... の値を決めるとよい。 15 を積で表すと, 15 153であるから, nは1g - または-13-1 の形。 【CHART 約数の個数, 総和 素因数分解した式を利用 fgore の正の約数の個数は (a+1) (+1)(c+1) (p,q,r は素数 解答 (1) 360=232-5であるから,正の約数の個数は 7 (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 積の法則を利用しても求 られる (p.309 参照)。 (2+22+2°)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(223)" =22".3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a であるための条件は (2n+1)(n+1)=28 のところを2mmと

未解決 回答数: 1
数学 高校生

なんで位置エネルギーを使う時と使わない時があるのですか?

2 では、万有引力による位置エネルギーGmM, Y 〈問9-3 質量mの人工衛星が右ページの図のように、質量Mの惑星を焦点の1つとするだ 円軌道を描きながら運動している。 万有引力定数をGとして以下の問いに答えよ。 (1) A点とB点における人工衛星の速さをそれぞれG, M, R. rを用いて表せ。 A点で人工衛星を加速させ、速さがになった。 (2) 加速させる速さによっては, 衛星は軌道から外れ, 無限の彼方へと飛んでい くことがある。 衛星が無限遠に飛んでいくためのμに関する条件を求めよ。 まず, A点における速さと, B点における速さをそれぞれv,Vとします。 ここでまず思い出してほしいのは「面積速度一定の法則」 です。 9-1 でやったように, 長軸上に物体があるときを考えると, 面積速度が一定です から 解きかた (1) 1/2rv=1/12 RV① 2" 解きかた B点での面積速度 を用いる問題を解いてみましょう A点での面積速度 もう1つ、万有引力の問題では 「力学的エネルギー保存則」が重要です。 衛星は運動エネルギーと万有引力による位置エネルギーを持っています。 ます。 衛星には万有引力しかはたらきませんから,これらのエネルギーの総和は保存し よって、力学的エネルギーの保存を考えて mM 2 m² + ( - 6 m ) = /2 m² ² + ( - GR A点での位置エネルギー A点での運動エネルギー R v=√2GM r(R+r) R(R+r) ....... ② B点での位置エネルギー B点での運動エネルギー そして ① ② 式を連立して解くと (右ページで式変形は解説) V=√2GM 問 9-3 補足 1 A (1) 面積速度一定の法則(ケプ ラーの第2法則) より 2 1 ミ RV...... ① 2 質量 m B点での面積速度 ①②より ① より V= 質量 M A点での面積速度 力学的エネルギー保存則より A点での運動エネルギー Y R -G mM 1 / m²³² + ( - 6 mM ) = 1/2 m² ² + ( - 6 m). -G 2 Y R A点での位置エネルギー v= 2GM v...... ③ ③ ④ より ぴー ③ よりv=2GM R2 R2-2 R2 ②より-V=2CM(121-1212)=26 R R R r(R+r) i=2GM- i=2GM r R(R+r) B点での運動エネルギー R-r rR R-r rR v=2GM 万有引力による位置エネルギー " B wwwwwww B点での位置エネルギー V= 2GM- R r(R+r) R-r rR ****** わ~! 大変な 計算だぁ~」 T R(R+r) ちゃんと 自分で 解いてみる のだぞ 237 CO 9

未解決 回答数: 1
数学 高校生

OOn+1 の求め方教えてください なぜ2rn+1なのか分かりません 普通に計算したらrnになったのですが、、、 右上ら辺に計算かいてます!!

164 基本例題 102 無限等比級数の応用 (2) ∠XOY [=60°] の2辺OX, OY に接する半径1の 円の中心をOとする。 線分00 円 01との交点 を中心とし, 2辺 OX, OY に接する円を 0 とする。 *****, On, 以下、同じようにして、 順に円O3, を作る。 このとき,円O1,02, を求めよ。 ・の面積の総和 CHART OLUTION 図形と極限 ...... n番目と (n+1) 番目の関係を調べて漸化式を作る ・・・・・・ 解答 円Oの半径,面積を,それぞれrn, Sn とする。 円0mは2辺OX, OY に接し ているので, 円 0 の中心0 は,2辺 OX, OY から等距離にある。 よって, 点0 は ∠XOY の二等分線上 にある。 ゆえに, O . X00=60°÷2=30°であるから 00n=2rn これと OnOn+1=00n-00n+1 から rn=2rn-2rn+) 円O, On+1の半径をそれぞれrn, Yn+1 として, In と rn+1 の関係式を導く。 直角 三角形に注目するとよい。 Yn+1= ゆえに また \n-1 よって = (1/2) したがって 2 -rn π > 4 21+1. 3 TC n=1 305 Y n+1 n+1 10100000 X ブル ① H 8 その面積の総和 ΣSn は,初項 π,公比 n=1 ゆえに, 円 01, O2, の無限等比級数である。公比 + <1 であるから,和は収 4 束し, その和は X n-1 Sn=πr²=π ² = π ( 1 ) ²₁ - ² 60° ・X |基本101 00nti = 00n-Ontin = 2mm-₂² apa ◆円O ²² と OX との接点 をHとすると, △OTOH は3辺が 21:√3の 比の直角三角形。 これ に着目して 1 と の関係を調べる。 30° 60°1

回答募集中 回答数: 0