学年

教科

質問の種類

数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

共通テスト/数学2B/第2問 タ の解き方を教えて頂きたいです。 よろしくお願いします🙇‍♀️

y = 第2問 (必答問題) (配点 30 ア [1] 太郎さんは、ボールをゴールに蹴り込む ゲームに参加した。 そのゲームは、 右の図1のように地点Oか ら地点Dに向かって転がしたボールを線分 OD 上の一点からゴールに向かって蹴り込み, 地点Aから地点Bまでの範囲にボールが飛 び込んだとき, ゴールしたことにするという ものであった。 13 B A 3m 1 ル xと表すことができる。 2m (第3回 7 ) 0 B そこで太郎さんは、どの位置から蹴るとゴールしやすいかを考えることにした。 地点Oを通り, 直線 ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは,Oを原点とし、座標軸を0からCの方向をx軸の正の方向。 OからBの方向をy軸の正の方向となるようにとり、点Pの位置でボールを蹴る ことを図2のように座標平面上に表した。 A ボールが転がされ、 ボールを蹴るライン 9m 図2 このとき, A(0, 2), B (0, 5) であり, ボールを蹴るラインを表す直線の方程式は 図1 3mi (数学ⅡI・数学B 第2問は次ページに続く。) 太郎さんは,最もゴールしやすいのは、∠APB が最大になる地点であると考 えた。 ∠APBが最大となる点Pの座標を求めよう。 Px, ア イ である。 方向となす角をそれぞれα, B (1/2<B<<<12/2)とする。 このとき tand= tan (α-β) (0<x≦9) とし、図2のように、 直線AP, BP がx軸の正の X ウ クケ x+ ∠APB=α-β と表され, APBが夢になることはないから, tan (a-β)を考 えることができる。 1 クケ さらに, tan (a-β)= シス x 5, tanβ = カキ x クケコサx+シス >0であるから, 0x≦9のとき tan (α-β)>0であ る。 コサx+ シス クケ x+ エオ カキ シス XC となり, は最小値 セソをとる。 以上のことから,点Pのx座標がタ コサ と変形でき, 0<x≦9の範囲で のとき, ∠APBは最大である。 (数学ⅡⅠI・数学B 第2問は次ページに続く。) (第3回 8 )

回答募集中 回答数: 0
数学 高校生

セ、ソについて、私は2枚目の右側に書いてある様に考え、円の斜線部分が答えになると思ったのですがなぜ答えと異なってしまうのか教えて下さい!因みに答えは6、7で合ってます。

数学ⅡⅠ 数学 B 第1問 (必答問題) (配点 30) [1] 0 を実数とする。 x の方程式 4x³-3x+sin 30=0 を考える。 (注)この科目には、選択問題があります。 (23ページ参照。) て であることと, sin (20+0) = エ と表せる。 2 sin20= ア sin Acos 0, sin30= I の解答群 となる。 ⑩sin 20 cos0 + cos 20sin0 ② sin 20cos0-cos 20 sin0 したがって ① は オsino- x = sin0, -sint サ cos 20 = 1 sin e であることから, sin30 は sin0を用い sin³0 4x-3x+3sing-45m² (x-sind){4x2+キ (sine)x+ 7sin¹0- ) 12x2sing と変形でき, ① の解を0を用いて表すと コ - ① cos 26cos8+ sin 20sin0 ③ cos 26cose-sin 20sin0 cos o 2 ウ -25inA ± √ 45i ²0- 4 (4 sia-3), =0 4ズーラ(+sing(3-4sin日) 1 - 3+45in 4 (数学ⅡI・数学B 第1問は次ページに続く。) -sing± sine-4sinto +3 42 (4x - 3+45in²0) -sino 510(1-4 -3sin' +3 (1-sin A A A - sin0+ f(0) = sing 4 コ cos 4 g(0)= サス とすると, y=f(8) のグラフの概形はシ y=g(8) のグラフの概形は カスであるら 1 - sine- 0 -3 4sine 4sin' 45ina 45ino-3 3sing-45in' -3 sine +45in 数学ⅡI・数学B = cos y N N in in A O x については,最も適当なものを,次の⑩~⑤のうちから一 つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 サス -0 (数学ⅡⅠ・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0