学年

教科

質問の種類

数学 高校生

(5)答えが出ません。どこが間違っているか教えてください。

練習 AABC ② 167 (1) AB の長さ (4) 外接円の半径 (2) ∠Bの大きさ (5)内接円の半径 (3) △ABCの面積 (1)余弦定理により c2=a+b2-2abcos C =(1+√3)+22-4(1+√3) cos 60° =(4+2√3)+4-2(1+√3)=6 c=AB=√6 3/3 89 [類 奈良教育大] ← 2辺と1角がわかって > いるから,余弦定理を利 用。 c0 であるから (2) 余弦定理により COS B = c²+a²-b² 2ca ← 3辺がわかっているか ら、余弦定理を利用。 (+1) 4章 ( 練習 [図形と計量」 (√6)+(1+√3)-22 2√6(1+√3) 6+2/3 (S-1) 2/6(1+√3) √3 1 = = √6 √2 よって (3) △ABC の面積は B=45° -1)x+(x-1)) 46+2√3 =2/5(5+1) (>>0) (+220) 1/12absinC=1/12 (1+√3) 2sin 60° 3+√3 (4)外接円の半径をRとすると, 正弦定理により R= C √6 √6 = =√√2 2 sin C 2sin 60° √3 内接円の中心をI, 半径をrとすると, AABC=AIBC+AICA+AIAB であるから 1 ←casin B (5) -√6 (1+√3)sin 45° でもよい。 ←R= b 2 sin B 2 2 sin 45° でもよい。 3+ √3 = 1 ·(1+√3).r 2 2 A √6 2 r I r 2 B C 1+√3 +11·2·7+1.√6.r =3+√3+√6 2 r ←内接円の半径 ear →三角形の面積を利用 して求める。 なお, △ABCの面積は (3) 求めた。 3+√3 r= 2 2 1+√3 ←√3で約分。 3+√3+√6 1+√2+√3 (1+√3)(1+√2-√3) {(1+√2)+√3}{(1+√2)-√3} √2+√6-2_1+√3-√2 2√√2 2 S ←本冊 p.49 参照。 ← √2 で約分。

解決済み 回答数: 1
数学 高校生

黄チャート数Ⅰ PRACTICE119(1)について cの長さを出すために、余弦定理b^2=を使って出そうとしました。答えのやり方としてはa^2=を使ってると思います。 だけど、自分のやり方だと答えが出ません。 ノートの「余弦定理により」以降の計算でどこかミスがあります... 続きを読む

ず PR 第4章 図形と計量 145 次の各場合について,△ABCの残りの辺の長さと角の大きさを求めよ。 ②119 (1) A=60°, B=45,6=√2 (2)a=√2,6=√3-1,C=135° (1) C=180°-(A+B)=75° 正弦定理により a √2 sin 60° 60° sin 45°+bcca- C よって a= √2 sin 60° sin 45° 2 2bco = =√3 余弦定理によりにして導かれる。 045° B (√3)²=(√2)2+c2-2√2ccos60°r)-081=(+8) a 8)S 別解 (後半) c=bcos60°+acos 45° C=- -√2c-1=0 を解いて √√2±√64-2ca con B =√2 1/12+ √2 . • 2 c0 であるから にしてかな √2+√6 C= 2 (2) 余弦定理により c2=(√2)2+(√3-12-2√2 (√3-1)cos 135° =2+(4-2√3)+2(√3-1)=4 mienie c0 であるから 更に,余弦定理により cos A = ゆえに よって c=2 S (√3-1)2+22-(√2)2_(4-2√3) +42 2 (3-1)・24(√3-1) 2√3 (√3-1)√303)081(+)-081 == 4 (√3-1) 2 A=30° 16(19k) = √2+√6 (本冊p.186 基本例題120 参照) Vinf. c=2 を求めた後, Bを求めようとすると cos B _22+(√2)2-(√3-1)2 02-2√2 4 となって Bが求められない。この 8)-081=6+√2 00 800 S B=180°-(C+A)=180°(135°+30°)=15° C=120 ような場合はAを求めれ ばよい。 $30 OSI-8 [s] 4章 PR

解決済み 回答数: 3