学年

教科

質問の種類

数学 高校生

解説お願いします。 写真の黄色マーカー部分についてです。 y=0以外に解が存在するのがよく分かりません。 図を見ても解はy=0だけのように見えます。 黄色マーカー部分はどこの解のことを指しているのか教えていただきたいです。 よろしくお願いします。

国 111円に接する放物線 放物線y= ★★★☆ =1/2x1と円+(-a)=(a>0, r>0)②につ いて、次の条件を満たすようなαの値の範囲を求め, r をαの式で表せ。 (1) 放物線 ①と円 ②が原点0で接し, かつほかに共有点をもたない (2) 放物線 ①と円 ②が異なる2点で接する。 xについての4次方程式(別解1) 820 >0の解は を消去 1, 2 次数が高い を連立 yについての2次方程式(本解 ) xを消去 次数が低い 共有点2つに対応 対応を考える」 解は共有点のy座標を表す。 y=0の解は 図形は y 軸対称であり, 解と共有点 接点1つに対応 y▲ 思考プロセス の対応は右の図のようになる。 条件の言い換え についての2次方程式が (1)y≧0において,解が y=0 のみ (2)y>0において, 重解をもつ x Action» 円と放物線の共有点は、連立して×を消去せよ 円 解 ①より, x=2y でありy≧0 6 x ② に代入すると 2y+(y-a)2=re xを消去する。 y2+2(1-a)y + (d2-r2) = 0 ③3 (1) 題意を満たすのは, ③が y = 0 を解にもち, y> 0 の範囲に解を y = 0 しか解はない。 もたないときである。 共有点が原点のみである から, y ≧0 においては, また,このとき, グラフ の対称性から, 原点で接 するといえる。 y = 0 が解であるから, a-r2 = 0 a>0, r>0であるから r=a このとき,③は y2+2(1-α)y=0 y{y+2(1-a)}= 0 よって, ③のy = 0 以外の解は y=2(α-1) 2(4-1)≦0 より 0<a≤1 したがって 0<a≦1,r = a ① 2 (α-1) が正であっては いけない。 2(4-1)=0のときも含 まれることに注意する。

解決済み 回答数: 1
数学 高校生

二次方程式の解についての質問です。 マーカー部分ですが、なぜこの形になるのかがわからないです。②の式の左辺を変形したらいいと書いていますが、どう変形したらそうなるのか教えて欲しいです。 よろしくお願いします🙇🏽

発例題 展 52 2次方程式の解についての証明問題 <<< 基本例題46 ① 000 a b は定数とする。 方程式 (x-a)(x-b)+x+1=0 の2つの解をα,Bとす。 ると,方程式(x-a)(x-β)-x-1=0 の2つの解は a, b であることを証明 せよ。 CHART 解と係数の問題 GUIDE 解と係数の関係を書き出す すると、この例題の 一解答の方程式 ①,②から。 条件は α+β=a+b-1, αβ=ab+1 結論は a+b=a+β+1,ab=aβ-1 となり,③ から ④を示すとよいことになる。 ...... 4 解答 (x-a)(x-b)+x+1=0 の左辺を展開して整理すると x2-(a+6-1)x+ab+1=0 ① この2つの解がα, β であるから,解と係数の関係により ゆえに a+β=a+b-1, aβ=ab+1 a+b=a+β+1, ab=aβ-1 このことは, a, b が2次方程式 x2-(a+β+1)x+αβ-1=0 すなわち (x-α)(x-β)-x-1=0 の解であることを示している。 Lecture 因数分解の利用 x²+px+g=0 の2つの 解がr,s ⇔ r+s=-p rs=q GUIDE の方針により, 1 を移する。 FotstJ ■x2-(和)x+ (積) = 0 ②の左辺を変形。 2次方程式の解α, β に対して, (x-α)(x-B), (-a) (-B), (α-)(B)の形の式 が出てきたときは 平 ax2+bx+c=0 の2つの解がα, ßax+bx+c=a(x-a)(x-β) を利用することで, あざやかに解決できることがある。 [上の例題の別解] (x-a)(x-b)+x+1=0 の2つの解がα, β であるから 左辺は, (x-a)(x-b)+x+1=(x-a)(x-B)と因数分解できる。 (x-a)(x-B)-x-1=(x-a)(x-b) ゆえに よって, ← 移項 (x-a)(x-β)-x-1=0 の2つの解は a, b である。 J 全宗

解決済み 回答数: 1