学年

教科

質問の種類

数学 高校生

緑マーカーで引いているL>0はどこから導き出したか教えてください。

2次の係数は数値 大値・最小値から2次関数の係数決定(1) 基本 基本 例題 73 69,71/ 重要 74 (1) 関数 y=-2x2+8x+k (1≦x≦4) の最大値が4であるように定数k 定めよ。 また, このとき最小値を求めよ。 (2) 関数 y=x²-2x+7-21(0≦x≦2) の最小値が11になるような正の の値を求めよ。 指針 関数を基本形y=a(x-p)2+α に直し, グラフをもとに最大値や最小値を求め (1) (最大値)=4(2) (最小値)=11 とおいた方程式を解く。 (2)では, 軸x=1 (1>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 解答 (1)y=-2x2+8x+kを変形すると y=-2(x-2)2+k+8 y 最大 k+8--A ---- k+6. よって, 1≦x≦4においては, 右の図 から, x=2で最大値k+8をとる。 012 ! ゆえにん+8=4 よって k=-4 このとき, x=4で最小値-4をとる。 (2) y=x2-2lx+12-21 を変形して 区間の中央はx=2で から,軸 x=2は区間 1≦x≦4で中央よりさ ある。 4 x 最大値を=4とおいて 最小 んの方程式を解く。 y=(x-1)2-21 [1]0 <l≦2 のとき, x=1で最小値 -27 をとる。 [1] VA 11 ! 2l=11 とすると 1=- 2 0 これは 01≦2を満たさない。 2 x 1 最小 [2]21のとき, x=2で最小値 22-21・2+12-21 つまり 2-61+4 [2] をとる 2-6l+4=11 とすると 12-61-7=0 これを解くと 2 <l を満たすものは 11 最小 02 l=-1,7 l=7 M 以上から、 求めるの値は l=7 -21 練習 (1) 「Zは正」に注意。 ◆0 <Z≦2 のとき, 軸x=1は区間の内 →頂点 x=1で最 この確認を忘れず 21のとき, 軸x=1は区間の 区間の右端 x= (Z+1)(Z-7)=0 M その確認を忘れず

解決済み 回答数: 1
数学 高校生

(2)の解説の3行目からがわかりません。多分2枚目の写真の知識を使うのですがこの説明も理解できないです。

26 剰余の定理 (III) (I) Mes -2a-2b+26=6 -2a-b+26=14 (1) 整式 P(z) をπ-1,-2,エー3でわったときの余りが、そ れぞれ 6,1426 であるとき,P(z) を (x-1)(x-2)(x-3) で わったときの余りを求めよ. (2) 整式P(z) を (x-1)でわると、2x-1余り,r-2 でわると 5余るとき,P(x) を (x-1)(x-2)でわった余りを求めよ. 講 (1) 25 で考えたように,余りはax2+bx+c とおけます. あとは, a,b,c に関する連立方程式を作れば終わりです. しかし, 3文字の連立方程式は解くのがそれなりにたいへんです. こで,25 の考え方を利用すると負担が軽くなります。 余りをax2+bx+c とおいても P (1) P(2) しかないので, 未知数3つ (エノ 式2つの形になり, 答はでてきません. . a+b-10=0 l2a+b-12=0 ∴.a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 注 (別解)のポイントの部分は,P(3) R (3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR (z) (2次以下の整式)と おくと,P(x)=(x-1)(x-2)Q(x) +R(x) と表せる. 余 ところが,P(x) は (x-1)2 でわると2x-1余るので,R(z) も (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. :.P(x)=(x-1)(x-2)Q(z)+α(x-1)2+2x-1 P(2) = 5 だから, α+3=5 a=2 よって, 求める余りは, 2(x-1)'+2x-1 すなわち, 2x²-2x+1 解 答 (1) 求める余りはax+bx+c とおけるので, 3次式でわった余り P(x)=(x-1)(x-2)(x-3)Q(x)+ax2+bx+c は2次以下 と表せる. P(1)=6, P(2)=14,P(3)=26だから, ポイント f(x)をg(x)h(x) でわったときの余りをR(z) とす ると [a+b+c=6 4a+26+c=14 ......① ② 9a+3b+c=26 ...... ③ ① ② ③ より, a=2, 6=2,c=2 よって, 求める余りは2x2+2x+2 注 連立方程式を作る 25 の考え方を利用すると,次のような解答ができます。 (別解) P(x)=(x-1)(x-2)(x-3)Q(z)+R(z) P(x)はx-3でわると26余るので R(x) もx-3でわると26余る. (R(x)は2次以下の整式) ポイント よって, R(x)=(ax+b)(x-3) +26 とおける.ax+bx-3で P(1)=6,P(2)=14 より,R(1)=6,R(2)=14 わったときの商 演習問題 26 f(x)をg(x) でわった余りと R(x)をg(x) でわった余りは等しい (h(x) についても同様のことがいえる) (1) 整式P(x) をx+1, x-1, x+2でわると, それぞれ3, 7,4余 このとき,整式P(x) を (x+1)(x-1)(x+2) でわったときの りを求めよ. (2) 整式P(x) を (x+1)2でわった余りが2x+1, r-1でわった

解決済み 回答数: 1
数学 高校生

この問題で、2倍角や半角の公式を使うのは分かるんですけど、チャートに書いてある半角の公式が授業でやったものと違うから困惑してます😭 ノートの方の式を両辺2倍しても、チャートのような式にはならなくないですか?分母の2が消されるのかと思うんですけど…😭 教えて下さい🥹お願い... 続きを読む

基本 例題 137 2次同次式の最大・最小を公の色 f(0)=sin'0+sincos0+2cos2 SE CHART & SOLUTION 00 (0sec)の最大値と最小値を求めよ。 sincos の2次式角を20に直して合成 基本135 sin'01-cos20 半角の公式 sin20 sinocoso= L2倍角の公式 cos'=1+cos20 半角の公式 2 これらの公式を用いると, sind, coseの2次の同次式 (どの項も次数が同じである式) は 20 の三角関数で表される。 2 更に、三角関数の合成を使って, y=psin(20+α)+αの形に変形し, sin (20+α) のとり うる値の範囲を求める。 sinaの一般解は Snia 200+0S2000 iz= 4章 0 2000 nia0 200+ (Waia Irie- 17 解答 1)ontes+ nies-Orie= f(0)=sin20+sin Acos0+2cos2日 = 2 + 2n+2 +2・・ 2 すなわち 0=2月 は 3 2 181-083√2 as-081-05-28 onia (= (sin20+cos20)+ =(sin 0022 = sin(20+)+1/ == であるから Sale=e Onie $220066te nie +2 sin30=sin1-cos 20 sin 20 1+cos 20ial-nie & 80lme="asin20, cos 20 で表す。 sin 20 と cos 20 の和 Snie nisine cose の2次の同 次式。 加法定理 y m (1,1) 1 √2 4 0 1 なお、sin30 と π π 5 π 点が6個あるとが よって sin 30 √2 sin (20+)≤1 54 -1 47 π 4 10 1 x 各辺に √√2 を掛けて 2 3+√2 18001 √2 ゆえに 1≤ f(0)≤ 1/2=7sin(20+4 2 √2 したがって,f(0) は πC 20+ すなわち = 7 で最大値 3+√2 2 この各辺に を加える。 4 2 20すなわちで最小値1をとる。 利用

未解決 回答数: 2