学年

教科

質問の種類

数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0
数学 高校生

ア〜ウはどのように求めればいいんですか?💦

下の表は、A~Jの10人の生徒に10点満点の2種類のテスト ① ② を行った結果と、その平 均値である。ただし,表中のb,cは0<b≧c を満たす自然数である。 A B C D E F G H I J 7 8 6 3 5 10 8 8 6 9 2 5 2 1 1 6 3 4 6 (1) a の値を求めよ。 また,b,cの値の組をすべて求めよ。 (2) 太郎さんと花子さんは次の問題が宿題として出された。 生徒 テスト ① (点) テスト② (点) 番号で答えよ。ただし, 同じものを繰り返し選んでもよい。 ① 小さくなる ②大きくなる ③ 変わらない テス- 問題 Cのテスト②の得点が4点に,さらに、Hのテスト②の得点が2点に変更になったと仮定 すると,この変更の前後で10人のテスト①とテスト②の得点の相関係数はどのように変化 するか調べよ。 (点) 10 C この問題について先生と太郎さん、花子さんの3人が会話をしている。 太郎 : 6,cの値の組は1通りではないので,それぞれ相関係数を具体的に計算するのは大変だ。 先生: そうだね。 もっと簡単に相関係数の変化の様子を調べる方法はないか考えてみよう。 花子:テスト①とテスト②の得点の散布図を利用して考えられないでしょうか。 先生: いい考えだね。 太郎: まず、CとHの得点の変更前について A から Hの8人のテスト①とテスト②の得点を散布図 に示すと、図のようになります。 さらに, I, J のテスト①とテスト②の得点を表す点を,この 散布図を使って考えるんだね。 先生:図に,テスト①とテスト②の平均値を表す2本 の直線l1,l2 をかき加えて, 4つの区域に分け てみましょう。 そして, CとHの得点の変更後、 この散布図において, その変更した得点を表す 点の移動の様子を考えれば, b,cの値の組によ らず問題の答えがわかるんじゃないかな。 太郎:変更前と比べると,変更後では、10人のテスト①とテスト②の得点の共分散は (ア) ことがわかります。 テスト①の得点の分散は変わらず, テスト②の得点の分 散は (イ)ので,テスト①とテスト②の得点の相関係数は (ウ) んですね。 に当てはまるものとして正しいものを、次の①~③のうちから一つずつ選び、 9 8 3 2 1 0 平均値 a C 3 012345678 9 10 (点) テスト ①

回答募集中 回答数: 0
数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

数3積分の問題です。(2)でどうして0≦x≦1の範囲で考え始めているのかわからないです。教えていただきたいです。

304- 一数学ⅡI 練習 自然数nに対して、Infofxdxとする。 V (1) を求めよ。 また, In+In+1 をnで表せ。 1 (2) 不等式 SIS 2(n+1) @233 (1) (3) lim Σ 7110 k=1 HINT ここで k k=1 = [₁ + ₁*² ²1: n+1 x²+1 したがって 4₁ = S'² ₁ + x dx = S² ( 1 - 1 + x) dx =[x-log(1+x)]=1-log2 [+RVS="" " [XVS] = In +In+1 So ²x6 ² +² = S₁ ( ₁ ² ² + + + + + + + ) dx = S² x ² xn 1+x 1+x dx 1 (2) 0≦x≦1のとき, 1⁄/s; 1+x (3) (1) (2) の結果とはさみうちの原理を利用。 1 1+x =log2 が成り立つことを示せ。 n+1 (2) 0≦x≦1のとき よって ゆえに xn tot S="dx=S² + + dx = Sx よって ol+x =1 (3) (1)より,1=log2+L1, (-1) ²-1 k ≤1 が成り立つことを示せ。 1≤1+x≤2 lim- n→∞ 1 n+1 n+1 ―≦1から S₁²=²=dx=2(n+1) · S₁x³dx= n²+1 1 ≤In≤ 2(n+1) 1 1 + 2 3 (2) において よって, limIn=0であるから n→∞ n+1 1 4 dx lim (-1)*-1 n→∞ k=1 k xn 2 + =lim 1 n→∞ n+1 =In+In+1 であるから (-1)-1 n xn 2 = (log2+1₁)-(I1+I2)+(I2+I3)−(13+14) ++ (−1)n-¹ (In−1+In) = log2+(-1)"-¹ In 1 2(n+1) -= log2 xn 1+x ・+ =0 xn 1+x = ≤x" ← x (1+x)-1 1+x 1+x ← [類 琉球大〕 x^(1+x) 1+x =x² ←x²≥0 MERE n+1 ← S₁ x² dx = [X + 1] ₁ す。 n+1 ← 2 (-1) ²-¹ k=1 をInで表 CS-I+x\S ←はさみうちの原理。

解決済み 回答数: 1
数学 高校生

207.1 記述はこれでも大丈夫ですか??

基本 例題 2073次関数が極値をもつ条件,もたない条件 関数f(x)=x^3+ax²が極値をもつとき,定数aの満たすべき条件を求めよ。 (2) 関数f(x)=x^-6x+6ax が極大値と極小値をもつような定数aの値の範囲 を求めよ。 あるから、 18. 十分条件 め (3) 関数f(x)=x3+ax2+x+1が極値をもたないための必要十分条件を求めよ。 ただし, aは定数とする。 基本 201206 重要 210 SIST 指針 3次関数f(x) が 極値をもつ ⇔f'(x) の符号が変わる点がある ⇔f'(x)=0が異なる2つの実数解をもつ ⇔f'(x)=0の判別式 D>0 符号の変化 している。 解答 (1) f'(x)=3x2+2ax f(x) が極値をもつための条件は、 f'(x) = 0 が異なる2つの実 数解をもつことである。 3x2+2ax=0 の判別式をDとする D=a²-3·0=a² と ゆえに, d²>0 から このD>OTE ここで本 a=0 (2) f'(x)=3x²-12x+6a=3(x²-4x+2a)(+*o)n+(²8+ f(x) が極大値と極小値をもつための条件は,f'(x)=0 が異 なる2つの実数解をもつことである。 よって, x2-4x+2a=0 の判別式をDとすると D=(-2)^-1・2a=4-2aから, 4-2a>0より 極大 x=α 4 練習 3207 (3) f'(x)=3x2+2ax+1 f(x) が極値をもたないための必要十分条件は,f'(x) の符号 が変わらないことである。 ゆえに,f'(x)=0 すなわち 3x²+2ax+1=0 ① は実数解を1つだけもつかまたは 4(√4-a) 実数解をもたない。から よって、①の判別式をDとすると ここで D=q²-3.1=(a+√3)(a-√3) ゆえに (a+√3)(a-√3)=0 D≤0...... D>0 a <2 の係数) >0のとき y=f(x) | x=B₁ 極小 3次関数が極値をもつとき, 極大値と極小値を1つずつ もつ。 x(3x+2a)=0 から y=f'(x) / 心 Bx CONS 2 x=0, (3) よって a≠0 としてもよい。 D=0 . (*) XD<0 a y=f'(x) y=f'(x) / x x よって一≦a≦√(*)D<0は誤り。 (1) 関数f(x)=4.x3-3(2a+1)x² +6ax が極大値と極小値をもつとき,定数aが 満たすべき条件を求めよ。 [類 工学院大 ] (2) 関数f(x)=x3+ax²+(3a-6)x+5が極値をもつような定数aの値の範囲を [類 名古屋大 ] 323 +1 が常に単調に増加するような定数aの値の範 必学類 千葉工大] 6章 36 関数の増減と極大・極小

未解決 回答数: 1