学年

教科

質問の種類

数学 高校生

数Cの質問です! [ ]で囲まれているところの計算式を 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

その 基本 例題 13 なす角からベクトルを求める B, ACOR (1) 正の数とし, ベクトル = (1,1) 2.29 基本事項 2 00000] (1) があるとする。い まことのなす角が60°のときの値を求めよ。 [(1) 立教大] (2)=(1,2)=(m,n)(mとnは正の数)について ||=√10 であり, 33 1章 とのなす角は135°である。 このとき,m, nの値を求めよ。 基本12 3 る。 CHART & SOLUTION なす角からベクトルを求める = (a1, a2), = (b1, bz)とする。 内積をat=a||| cose, at=ab+azb2の2通りで表す 内積を2通りの方法で表し, これらを等しいとおいた方程式を解けばよい。 (1) は (2) ではm, nが正の数であることに注意する。 ■ ) を解く 問 解答 0° 1x 60° 1 1x 求めよ と (1)=1×1+1x(-p)=1-p |a|=√12+1?=√2,16|=√12+(-b)=√1+12 ←成分による表現。 a = |a|||cos60°から 1-p=√2√1+x ① 定義による表現。 201 ①の両辺を2乗して整理すると よって p=2±√3 p2-4p+1=0 (1)=1/12(12) ここで,①より, 1p0 であるから 0<p< 1 ゆえに p=2-√√3 整理する 1+0 であるから, ①の右辺は正。 よって, ①の左辺も正であり, 1-p>0 (2)|5|=√10から ||=10 よって m²+n2=10 ...... ① ||=√12+(-2)²=√5 であるから a•6=|a||6|cos 135°=√/5 ×√10×(-1/2)=-5 COS また, a1=1xm+(-2)xn=m-2n であるから m-2n=-5 定義による表現。」 ベクトルの内積 ←成分による表現。 ゆえに m=2n-5..... ② ②①に代入すると (2n-5)2+n2=10 整理すると 5n2-20n+15=0 よって よって n2-4n+3=0 ゆえに n=1,3 ②からn=1のとき m=-3, n=3 のとき m=1 (n-1)(n-3)=0 m, n は正の数であるから PRACTICE 13° ←m=-3<0 から不適。 m=1, n=3 \)\)= 20 (1) OA = (x, 1), OB=(2,1) について, OA, OB のなす角が45°であるとき, xの 値を求めよ。 (2)=(2-1) = (m,n) について,16=2√5であり,ことのなす角は60°で ある。このとき,m, nの値を求めよ。

解決済み 回答数: 1
数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1