学年

教科

質問の種類

数学 高校生

高1の数学の実テの問題で、(3)の解き方がわかりません。解説よろしくお願いします🙇‍♀️

[2] 次の【課題】に対する, 先生と太郎さんの会話を読んで,下の問いに答えよ。 【課題】 1月 IRISAS S I 々を正の定数とする。 実数xに関する2つの条件pg を次のように定める。 E Q:x < 3 命題 「pg」の真偽を調べよ。 先生:条件はaの値によってxの値の範囲が変わりますね, q=1のとき、命題 「pg」の真偽について考えてみましょう 太郎:α=1 のとき,条件p, q を満たす実数xの値の範囲を それぞれ数直線上に表すと右の図のようになるから 命題「p⇒g」は真であると言えます。 0 1 た 先生: 正解です。では、α=2のときも考えてみましょう。 太郎:a=2のとき、命題 「pg」はであると言えます。 先生:そうですね。では、命題 「pg」が真となるようなαの値の範囲はどうな りますか。 { 太郎: 命題 「pg 」 が真となるようなαの値の範囲は (イ) です。 先生: 正解です。では,次に【課題Ⅱ】を考えてみましょう。 【課題Ⅱ】 あ を実数の定数とする。 実数xに関する2つの条件 s, tを次のように定める。 s : 3≦x<5 t: x <6 または 6+1 <x 命題 「st」の真偽を調べよ。 先生: 命題 「st」 が真となるような6の値の範囲はどうなりますか。 太郎: 【課題Ⅰ】 と同じように数直線を利用して考えたら解けそうです。 I

未解決 回答数: 1
数学 高校生

⑵なんですが、問題の意味も、解説の意味も全然わかりません、教えてほしいです🙇‍♀️

重要 例題 71 定義域によって式が異なる関数 次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 関数f(x) (0≦x≦4) を右のように定義すると (0≦x<2) f(x)= (x)=x 8-2x (2≦x≦4) 123 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2) f(f(x)) f(x)のxf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0 f(x) <2となるxの範囲と, 2≦f(x)≦4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 3章 2 ⑧関数とグラフ (2f(x) (0≤f(x)<2) 解答 (2) f(f(x))= 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 向 f(f(x))=8-2f(x)=8-2.2x =8-4x 1≦x<2のとき 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4 のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) YA YA 4 2 1 変域ごとにグラフをかく。 (1) のグラフから、f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 「 「 1 J 1 2 3 4 X 0 1 2 3 4 X (2)のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 成関数といい、 (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 YA 8から2倍を 引く 4 2 0 4 x 2倍する

回答募集中 回答数: 0
数学 高校生

青いマーカーで囲った図や比通りにやったのですが答えが会いません💦 解答の図だと左に外分した線が伸びているので外分する向きが決まっているのでしょうか??

364 基本 例題 64 三角形の角の二等分線と比 0000 (1)/AB=3,BC=4, CA=6 である △ABCにおいて, ∠Aの外角の二等分 線が直線 BC と交わる点をDとする。 線分 BD の長さを求めよ。 (2)AB=4,BC=3, CA = 2 である △ABCにおいて, ∠Aおよびその外角 の二等分線が直線BC と交わる点を, それぞれ D, E とする。 線分 DEの 長さを求めよ。 CHART & SOLUTION 三角形の角の二等分線によってできる線分比 線分比)=(三角形の2辺の比) p.361 基本事項 2 基本 △A C 平 B 4 内角の二等分線による線分比 PSAS 外角の二等分線による線分比 右の図で、いずれも → 外分 BP:PC=AB: AC A 各辺の大小関係を,できるだけ正確に図にかいて考える。 (HM-Ma)=H3 B 解答 に入する。 uts HAS CI 外分するか (1)点Dは辺BC を AB AC に外分するから H3 + HA)#CHU+HA) BD:DC=AB:AC (M8+MA)S="A+A AB: AC=1:2であるから BD:DC=1:2 AB:AC=3:6 よって BD=BC=4 D ■BD DC=1:2 から B C BD:BC=1:1 (2)点Dは辺BC を AB AC に内分するから ゆえに BD:DC=AB:AC=2:1 1 ← AB: AC=4:2 合う、または、 DC=- 2+1×BC=1 -XBC=1る。この点をHとすると また,点Eは辺BC を AB AC に外分するから BE: EC=AB:AC 内 =2:1 ゆえに CE=BC=3 よって DE=DC+CE

未解決 回答数: 0