学年

教科

質問の種類

数学 高校生

右に書いてある「第1項が〜」のところの詳しい説明をして欲しいです。

mink 例題 B1.25 (等差数列)×(等比数列の和 TROVA 次の和を求めよ. S=1・1+2・3+3・3' + 4・' +......+n." - 「(同志社大改) 10 July S = 1 ·1+ 2 3+ 3 3° + 4 3 +..... + n ・3" - 1 考え方 各項の前の部分に着目すると, 解答 1, 2, 3, 4, OS DO さらに,各項の後の部分に着目すると, S=1・1 +2・3 + 3・3 + 4・3°+....‥+n3"~】 ①② より Focus -10) I+ よって, 7-1 1,33, 3.......... 等比数列 (初項1,公比 3 ) となる. JENSE BUUROOR H つまり,一般項a, は, am=n3"'= (等差数列)×(等比数列)となる。 この形の数列の和は,公比r(ここでは3) を利用して, S-S を計算するとよい。 an からま S=1·1+2·3+3·3³+4·3³¹+ ··· + n.3¹ 両辺に3を掛けると, 両辺に公比の3を掛 ける. 3S= 1・3+2・3°+3・3°+..+(n-1) 3"'+n・3" 11の和 1.(3-1) 3-1 n.3"= ・3"- 2 -2S=1・1+(2−1)・3+ (3-2)・32+(4-3)・3°+.・.・. 1.6 SOL ......+{n-(n-1)}・3"'-n・3" =1・1+1・3+1・3°+1・3°+...... +1.3"--n・3" =1+3+3+3°+…..... +3"'-n・3" 1 大変だが - n.3" 2+1; 等差数列 (初項1,公差1) 2 **** 3" S= 1 + 1/2-3²= 3³ (2n-1) + 1 M) =·3"+=+₁ -n. 4 4 47 an = (等差数列)×(等比数列) の形をした数列の和 S > S-rs を利用 ・・ (8) 各項の前の部分が1 になるように差をと り、各項の後の部分 に着目して考える。 は初項1,公比 3の等比数列の初項 から第n項までの和. ただし, の第1 項目が等比数列の初 項にならない場合も ある. (2) sl 10+A) & KI+A)} TOM

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

共通テストデータの分析です。 解答解説の4箇所について理解できなかったので教えていただけると幸いです。

100) X 数学Ⅰ・数学A (2) 太郎さんは、図1のS大回転のリタイア率R の最大値が大きすぎることを 不思議に思い, S大回転の14 レースを調べてみた。 すると, AとBの2レー スは天候不良のためレースが途中で打ち切られ, 打ち切られた後の選手の人数 を完走できなかった人数に含めていた。 そこで, 太郎さんは,出走予定の人数 を X, 完走できなかった人数をY, 打ち切られたことで出走できなかった人数 100 (Y-Z) X-Z をZとして,新しいリタイア率R' (%) を, R' = - で定義した。 その結果, A については、R = 51.7だったのがR' =5.2 になり, B について は,R = 53.7 だったのが R' = 34.1 となった。また,AとBを除く 12 レース については,RとR' の値は等しくなった。 R' R= 図 2 は, S 大回転 14 レースのリタイア率Rと新しいリタイア率R'の箱ひげ 図である。なお,R' の第1四分位数はちょうど 10,R'の中央値は 20 より少 し大きい値であり, R' の第3四分位数は25より少し小さい値である。 ただし、 14個の R の値に同じものはなく, 14 個の R' の値にも同じものはない。 100% x 100(Y-2) X-8 2 0 20 30 40 50 (%) 図2 S大回転のリタイア率Rと新しいリタイア率R' の箱ひげ図 (数学Ⅰ・数学A 第2問は次ページに続く。) R' = 10

回答募集中 回答数: 0
数学 高校生

(2)の解説がよく分かりません。変形から先を教えて頂きたいです!

〇和が -) 数列の 例題 310 漸化式と確率 (3) 数直線上を原点から右 (正の向き) に硬貨を投げて進む。 表が出れば 1 進み, 裏が出れば2進むものとする。 このようにして, ちょうど点nに到 達する確率をpm で表す. ただし, nは自然数とする. ( (1) 3以上のnについて, n と D-1, D-2 との関係式を求めよ. (2)≧3) を求めよ. 48305 ++ ■解答 (1) 点nに到達するのは, 点 (n-1) に到達して表 が出る場合か、点 (n-2) に到達して裏が出る場 immi mm 合である。よって, n≧3のとき, 考え方 (1) 点nに到達するのは、次の2つの場合が考えられる. (ii) (i) (n-1)に到達して、 表が出る. imm (ii) (-2)に到達して, 裏が出る. (大豆北) 1 (2) pn=12pn-1+1pn-2 を変形して, Focus P₁= G-LAL 初項 1 pn=Pn-1 • 2 + pn-2 • 1² = 12 Pn-1 + ½ pr-: 2 1 A-1293847 12/23 2' Pnt. +/1/2.pn-2 3 p2= だから,数列{bn+1-pn}は, 4 か=21,公比 = 1,公比 - 123の等比数列となり, n-1 n+1 Pn+₁-pn = 1 + (-1) ² - ¹ = (-1)^² ..1 ...... 4 2 数列 pats+ /1/2pm} は隣り合う項が等しいから Pn+₁ + 1/² Pn= P₂ + ²/² P₁ = ³ + 1/2 - 12/1 3 4 よって①,② より p=//{1-(-1/2)^2} n-2 NDOSE 3&<$7/₂2²_1 A2 pn=²3 3 43435 n-1 x2= -x+ Pn-Pn-1=--(Pn-1-Pn-2) Pn-Pn-1=(Pn-1-pn-2) 2 2 2解x=- **** (n-1)+1 n (京都大) 特性方程式 (n−2)+2n ([). 裏 → 23 (i) 点nに到達する1回前の試行に注目して漸化式を作る 3項間 100 2' n 1/12/12/01/11/1/11/11/ βとして Pn-apn-1 B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1_1 P₂= P₁° 2 + 2 = 2 Pit. 3 1 \n +1] || =* = P₂+2 P₁ 2-1 をα, Pn+1 + 1/ Pn=p₂ + 1/2 Pn - 1 + XC 1 2 なとき 第8章

回答募集中 回答数: 0