学年

教科

質問の種類

数学 高校生

この問題を私は別解のやり方を使って解いたのですが、これから先色んな問題をといていく中でこっちの方が簡単などありますか?? 教えてください🙇‍♀️🙇‍♀️

基本例題 55 グラフの対称移動 放物線 y=2x²-4x+3 を,次の直線または点に関して,それぞれ対称移動し て得られる放物線の方程式を求めよ。 (1) x 軸 (2) y 軸 (3) 原点 CHART & SOLUTION y=f(x)のグラフの対称移動 x軸に関する対称移動 を - におき換えて 軸に関する対称移動 原点に関する対称移動 -y=f(x) すなわち y=f(x) x を -x におき換えて y=f(-x) [xをx lv -v -y=f(-x) すなわち y=f(-x) におき換えて 解答 (1) -y=2x²-4x+3 すなわち y=-2x2+4x-3 (2) y=2(-x)-4(-x)+3 すなわち y=2x2+4x+3 (3) -y=2(-x)-4(-x)+3 すなわち y=-2x²-4x-3 別解 放物線 y=2x²-4x+3 す なわちy=2(x-1)2 +1は頂点 が点 (1,1)で下に凸である。 la s (1) x軸に関して対称移動すると,頂点は点 (1,-1) で上 に凸の放物線となるから u O 黄yを-yに。 Ty=2x²-4x+3 [1+x8 y=-2(x-1)2-1(y=-2x2+4x-3 でもよい) (2) y軸に関して対称移動すると,頂点は点(-1,1)で下 に凸の放物線となるから y=2(x+1)+1 (y=2x2+4x+3 でもよい) (3) 原点に関して対称移動すると, 頂点は点(-1,-1)で 上に凸の放物線となるから p.91 基本事項 5| y=-2(x+1)^-1 (y=-2x²-4x-3 でもよい) に。 x-xに, を-yに inf. 2次関数 y=ax²+bx+c のグラフ は,頂点の位置とx2の係 数で決まる。 よって,別解 のように頂点を対称移動さ てもよい。 せαの正負を考えて求め XOKOCH

回答募集中 回答数: 0
数学 高校生

(2)のよって~の計画方法を分かりやすく教えてください。

119 合同式の利用 (2) 0 合同式を用いて,次の問いに答えよ。 例題 (1) 13 MH を9で割った余りを求めよ。 nが自然数のとき, 26F-5+3'" は11で割り切れることを示せ。 (2) CHART SOLUTION αをm²で割った余り まずは a²,a, で合同式を考える (1) 134 (mod 9) であるから, 48 を9で割った余りを考えればよい。 そして、 4=1 (mod 9) または A-1 (mod 9) となるkを見つけることが できれば,累乗はすぐに計算できる。 (2) 232-1 (mod !!) ではあるが,指数に文字が入っているため、うま く利用できない。 (1) 134 (mod 9) であり 指数がnの1次式になっている項の和+4+6++.....については,まず d", b,..... の合同式を考えるとよい。 4167 (mod 9) よって 14² 47.1 28 1 (mod 9) 13100 4100 (4³) 33.4 13.44 (mod 9) よって ゆえに 求める余りは 4 (2) 2649 (mod 11) 39 (mod 11) であり 26-5-20-11+1 (29) 2 00000 ((2) 類 学習院大) 32"=(3²)" 20-6+32" (2) "1.2+ (32)" 9"-¹.2+9" =9"-¹(2+9) =9"~1.110 (mod 11) 418, 419 PRACTICE 1199 421 ← 132, 13, ·····を考えて もよいが. の方が計算しやすい。 99⁰-1.9 -1≧0であるから 97-1は整数。 ゆえに,297-5 +327は11の倍数である。 参考 (2) は、数学Bで学習する 「数学的帰納法」という証明法を用いて証明することも できる。

回答募集中 回答数: 0
数学 高校生

[1]なぜ最後の一文で −1−iとその共役複素数が一致する という文がいるんですか?? 横に書いてある 点pが点ABに一致する場合と書いてありますが,理解できませんでした

重要 例題 31 直線の方程式 αを複素数の定数とする。 (1), (2) の直線上の点Pを表す複素数zは,等式 az+az-2=0 を満たす。 αの値をそれぞれ求めよ。 (1) 2点A(-1), B (1+2ź) を通る直線上の点P (2) 中心が (2+3) 半径が2√2 の円周上の点 D (i) における接線上の点P 基本 28 CHART SOLUTION 異なる3点A(a), B(B), P(z) について 3点A, B, P が一直線上にある⇔ 2直線AB, AP が垂直に交わる k-a B-αが実数 解答 (1) 3点A,B, Pは一直線上にあるから, z−(−1) z+1 は実数である。 1+2i-(-1)^2+2i z-a (1) β-a (2) 接線半径であるから, 2直線 CD, DP は垂直に交わる。 z+1 ゆえに 22 22 すなわち z+1 2+2i 2+2i i zi zi (2) CD ⊥DP であるから, 2+3i-i 2+2i ゆえに 両辺に (1−i) (1+i) を掛けて 整理して (−1+ i)z+(1+i) 両辺にえを掛けて共律系)(i+1)+2=0 よって(-1-1)+(-1+7z-2=0 -1+i=-1-i であるから α=-1+i 2+2i 2+2i/. + (2) -0かつ z-it 1+i z+i. 1-i -=0 すなわち ① の両辺に (1+i) (1−i) を掛けて z-a B-a 整理して 1+ i = 1 -i であるから PRACTICE... 31③ 1 + z-a が実数 B-a z+1 +1 1-i 1+i (1+i)(z+1)=(1-i)(z+1) +2i = 0 α= 2 6 zia B-a スーi 2+2i ① かつスキi が純虚数 #0 (1-i)(z-i)+(1+i)(2+i)=0 (1−i)z+(1+i)z-2=0 (z=i のときも成立) は純虚数である。 A YA 2 -101 B 3 D 0 ◆点Pが点A, Bに一致 する場合も含まれる。 Ay P. C 2 53 18 ◆点Pが点Dに一致する 場合も含まれる。 a=1+i 3i とし, 複素数 1,α に対応する複素数平面上の点をそ 複素数を用いて, 方程式 βz +βz +1=0 で表さ 1章 複素数と図形

回答募集中 回答数: 0
数学 高校生

[1]なぜ2π−αなのか図的に理解できないので教えてください 範囲を満たすためにやっているのはわかってるんですが,なぜこう表すのか理解できないです

う 重要 例題 21 複素数の極形式(2) 次の複素数を極形式で表せ。 ただし、偏角0は0=0<2πとする。 (1) cosaisina (0<a<2π) (2) sina+icosa (osa<) * 23と好 CHART @ SOLUTION 極形式r(cos+isin (1) 虚部の符号 - を+に→ sin(-9)=-sine を利用 実部も虚部に偏角を合わせる - cos (-8)=cose を利用 (2) 実部は sin を cos に 虚部は cos を sin に → COS A. Cos (e)sino, sin (6) = cose を利用 2 別解 与えられた複素数と Z = COsa + isina との図形的な位置関係から偏角 を求める。 解答 (1) cosa=cos(-a), -sina=sin(-α) であるから cosa-isina=cos(-a)+isin(-α) の形 三角関数の公式を利用 sinaticosa=cos だのか? =cos(2-a)+isin(2™-α) ① 0<a<2πより,0<2π-α<2πであるから,①は求める極形式である。 π (2) sing=cos (o), cosa=sin (フレーム)であるから 2 。 -icos a=cos (2-a)+isin (2-a) π π 0≦aより、0<a≦であるから, ② は求める極形式である。 ~² (2x - V 00000 (2) ²2=20 に関して対称であるから,の偏角は 2π-α よって z=cos (2π-a)+isin (2z-α) (2) z=sinaticosa とおくと z= (cosa-isina)=izo したがって,zはZを原点を中心と π ■αは偏角 0の条件 0≦<2πを満たさない。 基本10 YA 2π-α Zo

回答募集中 回答数: 0
数学 高校生

A→Pまでの場合分けについて教えてください🙇🏻‍♀️‪‪

り! 4連勝した が決まる。 クゲーム目に 20 のどちら ◯加法定 コーバ 重要 例題 48 平面上の点の移動と反復試行 右の図のように,東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通っ て地点Bへ向かう。このとき,途中で地点Pを通る 確率を求めよ。ただし,各交差点で,東に行くか, 北に行くかは等確率とし,一方しか行けないときは 確率1でその方向に行くものとする。 CHART O SOLUTION 最短経路 道順によって確率が異なる A→P→Bの経路の総数 A→Bの経路の総数 4C3X1 6C3 これは,どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって確率が異なる。 例えば, 111 1 22 22 求める確率を A↑ →→→P↑↑B の確率は 1回目の当 A→→→↑P↑↑B の確率は 解答 右の図のように,地点 C, C', P'をと る。 P を通る道順には次の2つの場合 があり,これらは互いに排反である。 [1] 道順A→C→C→P→Bの場合 この確率は 1/2x1/x/1/2×1×1×1=1/28 [2] 道順A→P'→P→Bの場合 この確率は sc (12/2(1/2)×1/1×1×1=1/16 3 1: 3C 5 よって、求める確率は 1/3+1/6=1 8 から, 1 1 1 22 2 8 よって, P を通る道順を, 通る点で分けて確率を計算する。 3 ·1·1: ・・1・1・1= 1 16 1 C' B P P C PRACTICE・・・・ 48 ③ 右の図のように、東西に4本、南北に5本の道路がある。地 点Aから出発した人が最短の道順を通って地点Bへ向かう。 このとき,途中で地点Pを通る確率を求めよ。ただし、各交 差点で、東に行くか、北に行くかは等確率とし,一方しか行 けないときは確率1でその方向に行くものとする。 とするのは誤り! A | A A 確率の加法定理。 B P P | 基本 27,46 ◆C→Pは1通りの道順 であることに注意。 [1] →→→↑↑↑と進む。 [2] ○○○→↑↑と進む。 ○には2個と↑1個 が入る。 北 P B 北

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分の図の意味が分かりません💦 教えてください🙏

X コ 5 確率と漸化式 (1) 日本 例題 37 00000 される回数が奇数である確率pn をnの式で表せ。 1,2,3,4,5,6,7,8の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 このn回の試行で、数字8のカードが取り出 [産業医大 ] 基本30 CHART & SOLUTION 確率と漸化式LUTIONE 回目と(n+1) 回目に着目 確率が であるから, 偶数である確率は 1-pn 回の試行で, 数字 8 のカードが取り出される回数が奇数である (n+1)回の試行でpn+1 を求めるには, 次の2つの場合を考える。 7回の試行で奇数回で,(n+1)回目に8以外のカードを取り出す n回の試行で偶数回で,(n+1)回目に8のカードを取り出す 変形すると また (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1) 回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1) 回目に 8 のカードが取り出される のいずれかであり,[1], [2] は互いに排反であるから Pn+1=pn/1+(1-pn)・・ = 7 3 8 4 Pnt Pn+17 したがって 3 -12--³-(pm-12) pn Pi 11/27 - 12/17 - 31/12/1 8 Pn 3 n-1 3/3 84 n 1 1/3 p=²2 - 1 (3³) - (¹-(²) pn 24 S 8² よって、数列{ba-1/2 は初項 - 123 公比 1/23の等比数列で あるから -4-4-4/124 MOITUIG 8 回目 Pn 1-pn × 7 (n+1)回目 8 P+1 x. 8 inf. ① 確率の加法定理 事象A, Bが互いに排反 (A∩B=Ø) のとき P(AUB)=P(A)+P(B) ② 独立な試行 STで, Sでは事象A, T では 事象Bが起こる事象をC とすると P(C)=P(A)P(B) 3 a=a+₁ を解くと a=²1/22 は, 1枚目のカード が8の確率であるから p=1/ 405 1章 化式

回答募集中 回答数: 0