学年

教科

質問の種類

数学 高校生

なぜ75の答えはどちらでもいいのに76の答えは1つしかダメなんですか?

■0周年 IDE 130 海にま 指針 シン 昔の活 あと1 基本 例題 76 2次関数のグラフの平行移動 (2) 20 2次関数y=2x2+6x+7 y=2x2-4x+1 ①のグラフは,2次関数 000 ②のグラフをどのように平行移動したものか。基本事項 x 軸方向に 1, y 軸方向に -2 だけ平行移動すると,放物線 C:y=2x2+8x+9 に移されるような放物線Cの方程式を求めよ。 (1) 頂点の移動に注目して考えるとよい。 まず,①,② それぞれを基本形に直し、頂点の座標を調べる。 (2) 放物線Cは, 放物線 C を与えられた平行移動の逆向きに平行移動」 ある。 p.124 基本事項 3 ② を利用。 (1) ① を変形すると y=2(x+3)²+55/5 5 ①の頂点は点 (12/31) y=2(x-1)2-1 ②を変形すると ②の頂点は (1,-1) 3-2 vico 5-2 ② [9] 0 1 x ② のグラフをx軸方向に p, y 軸方向に q だけ平行移動 したとき, ① のグラフに重なるとすると 1点 グラ した。 ①:2x2+6+7 =2(x2+3x)+1 =2+2+3+ -2.1 ②:2x2-4x+1 ① 点 x軸 3軸 原点 ② 関 x 原 車 解説 ■ 対称移 平面上 =2(x²-2x)+すこと =2(x²-2x+1 特に, -2-12+1 ヤー ミチー 解答 チャート 原点を (a 15 1+p=123-1+g=/2/27 (*) 頂点の座標の ゆえに p=− q= 5 2 7(*) 見て, 2 3 55 (S- -1=- よって,①のグラフは,②のグラフをx軸方向に一 5 2 2'2 7 2 としてもよい。 放物 2 軸方向に だけ平行移動したもの。 したがって y=2x2+12x+21 JST y=2(x+3)+3_ (2)放物線Cは,放物線 C を x 軸方向に -1, y 軸方向に 2だけ平行移動したもので,その方程式は』(S) メー y-2=2(x+1)+8(x+1)+9_ 9 (8+x)s- 別解放物線 C の方程式を変形するとy=2(x+2)2+1 よって,放物線 C の頂点は点(-2, 1) であるから,放 物線Cの頂点は 点(-2-1, 1+2) すなわち 点(-3, 3) ゆえに、放物線Cの方程式は ly-y-2 換え。 頂点の移動に着 法。 X す 重 軸方向に1, 放物 (1- y軸方向に - 2 得 C 軸方向に と C 軸方向に2 Q [x→x-(-1) す

未解決 回答数: 0
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0
数学 高校生

数2 式と証明 等式と不等式の証明 写真の(2)のマーカを引いたところがなんでそういう式を書けるのかわかりません。 教えてくださると助かります🙏

18 48 日24 標 例題 準 24 不等式の証明 (5) ****** 絶対値を含む不等式 次の不等式が成り立つことを証明せよ。 CHART & GUIDE 解答 |a|-|0|=|a+6|≦|a|+|01 絶対値を含む不等式 絶対値の性質 A=A', |A|≧A を利用 (a/+/6)-1a+b を変形して≧0 を示す。 不等式 PQR は, P≦Q かつ QR のこと。 2つに分けて証明する。 [1] [a+6|≦|a|+|6|の証明 [2] |a|-|6|≦|a+b|の証明... |a|≦|a+6|+16 を示す。 [1]の不等式と似ているから, [1]で証明した不等式の結果を使う。 [1] |a+b|≦|a|+|6|の証明 a+6|20|4|+|6|20 (a+102-1a+b=(a2+2|a||6|+62)-(a+2ab+62) であるから,平方の差をと =2(|ab|-ab) |ab|≧ab であるから したがって (d) 2(ab-ab) 20 |a+b=(|a|+|6|2 (+5 lat6/20,|a|+10/20 であるから lato|≧|a|+|6| [2] |a|-|6|≦|a+6| の証明 で ○ =a+b, △=-6 [1]の結果|○+△|≦|0|+|||| |a|=|(a+b)+(-6)|≦|a+6|+|-6| る方針で証明する。 ◆等号は, lab=ab すな わち ab≧0 のとき成り 立つ。このとき, a,b は同符号であるか、少な くとも一方は0である。 [2] 常に,|a|-|6|≧0 で op はないから, [1]と同じ 方針では証明できない =|a+6|+|6|-|-6|=|6| よって |a|≦|a+6|+|6| すなわち |a|-|6|≦la+b1 [1], [2] により|a|-|6|≧|a+6|≦|a|+|0|

解決済み 回答数: 1
数学 高校生

写真の質問に答えてください!

産率と漸化 発展 例題 102 基礎例題 900000 1個のさいころを繰り返し投げ, 3の倍数の目が出る回数を数える。 今, ぃころをn回投げるとき、3の倍数の目が奇数回出る確率を とする。 (1) Pots を で表せ。 CHART GUIDE (2) n式で表せ。 確率の問題 [中央大〕 だから、3の倍数以外の 2回目と(n+1)回目に注目して漸化式を作ろ (1)回投げて3の倍数の目が奇数回出るとき、 次の2つの場合がある。 [1] n回目までに3の倍数の目が奇数回出て, (n+1)回目に3の倍数以外の目が出る。 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に3の倍数の目が出る。 目は1-9になると 3章 いいますが、 回目 (n+1)回目 発 展 P1 学 13の倍数以外 D [2] 3の倍数 なぜが 3の倍数の確率に 3の倍数は36の2つ 解答 2 さいころを1回投げて、3の倍数の目が出る確率は 1 6 さいころを (n+1) 回投げて3の倍数の目が奇数回出るのは、 次の2つの場合がある。 3なるのでしょうか? [ 7回目までに3の倍数の目が奇数回出て,(n+1)回目に[1]の確率×(1-1) 13の倍数以外の目が出る場合 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に [2]の確率(1-PJx13 3の倍数の目が出る場合 [1] [2] は互いに排反であるから Pat Q (1)から =(1/2)+(1-12×1/2=1/01/1 ゆえに、数列 pt1 Pan-1 2 3 (P-1) 数列{po-1-12 は公比/1/3の等比数列で、初項は 1 1 1 一 3 ゆえに 102 Pa 2 6 =

未解決 回答数: 0