学年

教科

質問の種類

数学 高校生

ヨウ化水素の物質量の変化の図示が分かりません

基本例題34 電離定数 0.030mol/Lの酢酸水溶液の酢酸の電離度α および水素イオン濃度を求めよ。ただし、 酢酸の電離定数を2.7×10mol/L,αは1に比べて非常に小さいものとする ■解答 188 【mol/L] の酢酸水溶液において、 酢酸の電離度がαのとき、電離す る酢酸分子は co[mol/L] なので, 生じる酢酸イオン、水素イオンも ca[mol/L] となる。 電離平衡時の 量的関係を調べ, 電離定数K の 式に代入してc, α と K の関係 式をつくり、 αを求める。 このと き、実際にαが1に比べて非常に 小さいことを確認する。 目安は α<0.05程度である。 はじめ 平衡時 0 ca (mo < 1 であり, 1-α=1 とみなされるので, 電離定数は。 ように表される。 CH₂COOH CH3COO- +H* a = √ したがって, C c(1-a) [CH3COO-] [H+] Lah Jo Ka= [CH3COOH] 2.7×10-5 0.030 [知識] グラフ 323. 平衡状態と平衡定数水素1.00mol とヨウ 素1.40molを100Lの容器に入れ、 ある温度に保 った。このときの水素の物質量の変化は、図のよ うであった。 (1) 平衡状態における水素, ヨウ素およびヨウ 化水素のモル濃度を求めよ。 (2) 減少するヨウ素および生成するヨウ化水素 の物質量の変化を図示せよ。 (3) この反応の平衡定数を求めよ。 HOKUESE [H+]=ca=0.030mol/L×0.030=9.0×10mol/L. $5 (1) 3 Tom T. &IH (8) IH A |基本|問題| 119 つ選べ。 (ア) N2O4 と NO2 の濃度の比は1:2である。 (イ) N2O4 と NO2 の圧力(分圧)の比は1:2である。 (ウ) N2O4 の濃度は一定となっている。 (エ) 正反応と逆反応の速さは等しい。 (オ) 正反応も逆反応もおこらず、反応が停止している。 2NO2 の反応 [知識 322. 平衡状態四酸化二窒素 N2O4 をある温度, 圧力に保つと, N2O4 がおこり,平衡状態に達した。 平衡状態に関する次の記述のうちから,正しいものを [mol] 2.0 物質量 ca 1.5 (ca)² c(1-a) =0.030 SCIEN 49 kieuốc (S)(ung Fossh — (R),H&+ (2);M (1) SUL (1) HOOSH+HOOT,HO (1) MOOOHO (SE 1.0 =ca² 0.5 0 324. 平衡の量的関係 一定温度で平衡状態 CHICOOH +c 酢酸 H この温度にお 酢酸1.00mc で平衡状態に達 時間 - 例題 F (1) (2) 325. 反応量と解 入れると、二酸 をP[Pa], 四 N2O4 (気) 平衡状態 平衡時⊂ この反 (1) (2) (3) [知識] 326. 条件変 よって,平 (1) 302 N2+ 2HI (4) 2SC (5) NH (2) (3) 327. 平 Im 2SO (1) SC の (2

回答募集中 回答数: 0
数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0