学年

教科

質問の種類

数学 高校生

数三微分法の問題なのですが次数がnの場合にゼロになるように解説では考えているのですが次数n-1がゼロになる場合は考えなくて良いのですか?教えて頂きたいです。

分け EXxの整式 f(x)がxf(x)+(1-x)f'(x)+3f(x) = 0(0)=1を満たすとき、f(x)を求めよ。 ③ 132 f(x) の次数をn (nは0以上の整数) とする。 [類 神戸大] HINT f(x) の最高次の n = 0 すなわち f(x) が定数のとき, f (0) =1から このとき f'(x) = 0 f'(x)=0 f(x)=1 項に着目して、まず f(x) の次数を求める。 条件式に代入すると, 3f(x)=0となり これはf(x)=1に反するから,不適。 f(x) = 0 n≧1のとき,f(x) の最高次の項を ax (α≠0) とする。 xf'(x)+(1-x)f'(x)+3f(x)=0の左辺を変形して {3f(x)-xf(x)}+{f(x)+xf" (x)}=0 f(x) xf'(x) の最高次の次数はnであり, 3f(x)-xf'(x) ←3f(x)-xf'(x) の次数 のn次の項について 3ax"x.naxn-1=(3-n)ax" 条件から (3-n)ax=0 α≠0 であるからn=3 土て相殺されて しまう可能性はない?? したがって, f(x) の次数は3であることが必要条件である。 このとき,f(0)=1から,f(x)=ax+bx2+cx+1 (α≠0) とお けて f'(x) =3ax2+2bx+c, f'(x)=6ax+26 はn以下,f'(x)+xf(x) の次数は (n-1) 以下。 xf"(x)+(1-x)f'(x)+3f(x)=0に代入して x(6ax+26)+(1-x) (3ax2+2bx+c) +3(ax3+bx2+cx+1)=0 整理して笑(a+b)x2+(46+2c)x+c+3=0 08 ←Ax2+Bx+C=0がx よって 9a+b=0,46+2c=0, c+3=0) の恒等式 = (n) ⇔A=B=C=0

回答募集中 回答数: 0
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

回答募集中 回答数: 0
数学 高校生

(2)について なぜ側面の塗り方は数珠順列ではなく、円順列なのですか?

PR 第1章 場合の数 209 立方体の各面に、隣り合った面の色は異なるように, 色を塗りたい。 ただし, 立方体を回転させ 21 て一致する塗り方は同じとみなす。 (1)異なる6色をすべて使って塗る方法は何通りあるか。 (2)異なる4色をすべて使って塗る方法は何通りあるか。 (1) 上面の色を1つ固定すると,下面の塗り方は 5通り そのおのおのに対して, 側面の塗り方は,異なる 4個の円順列で区別 できる (4-1)!=3!=6(通り) (1) 1色で固定 展開図 (上面を除く) 下面 1章 PR PP 210 面の塗り方は異なる2個の円順列に等しく (2-1)!=1!=1(通り) 長方形の 125 よって、異なる6色をすべて使って塗る方法は 5×6=30(通り) 6つの面を異なる4色で塗るには, 1組の向か い合う2面を1色で塗り, もう1組の向かい合う 2面を別の1色で塗る。 4色から2組の向かい合う面に塗る2色の選び方 八重は4C2=6(通り) 長方 異なる色 側面は円順列 上下の面の色が異なるから, じゅず順 列ではない。 HINT (2) 回転させると一致する場 合があるから注意。 同色で 固定 色んな色 2組の向かい合う面の色を固定すると、残りの2 共 MAHOES 同色で 固定 固定すると同 まわしたとき かぶってほう ACTUACIOMAHA 2!通りではない。 のとき よって、異なる4色をすべて使って塗る方法は [1 2 6×1=6(通り) (回転させると一致する) 35-15( () 04-8+Se n (n≧2) を求めよ。 通りあるか。 ed

回答募集中 回答数: 0