学年

教科

質問の種類

数学 高校生

数C 位置ベクトル 59と60の問題について、考え方が付属の回答とかなり異なっていたためこのような答え方考え方でも大丈夫なのか見て頂きたいです。 よろしくお願い致します。 付属の回答も付けました。

B 59 △ABC の辺BC, CA, AB を 2:1に内分する点をそれぞれ D, E, F とする。 このとき, △ABCと△DEF の重心が一致することを証明せよ。 A 51,52 □ 60 四角形ABCD の辺 AB, BC, CD, DA を 3:2に内分する点をそれぞれ E,F,G, A 51 Hとする。 四角形 EFGH が平行四辺形ならば, 四角形ABCD も平行四辺形であること を証明せよ。 AJ 53 □ 61 △OAB において,辺OA を 3:1に外分する点をC, 辺ABを32に内分する点を D, 線分 BC を 1:kに内分する点をEとする。01 (1) OA = c, OB = とするとき, OE を a, とんを用いて表せ。 (2)3点 0, D, Eが一直線上にあるとき, kの値を求めよ。 62 平行四辺形ABCD において,辺BCの中点をE, 辺 CD を2:1 に内分する点を F, AJ 55,56 線分AE と線分 BF の交点をPとする。 AB = 1, AD = d として,AP を b, dで表せ。 また, BP:PF, APPE を求めよ。 63 △ABC の辺BC, CA, ABの中点をそれぞれL, M, Nとする。 このとき, A 58 AL = MN ならば AB AC であることを証明せよ。 章 ベクトル 59 AB-B このとき AG B2=-1 AX+AB+AC また、EFDの重心をG'とする。 AC-2 とする。 F E ① - D B 6 DIC AF=AB = 7 B AE=AZ = AB 2 =1/2AB+1/A2 = ++38 -AG 1= 2.11 2. NG AF + KE + AB = +16+ + + (++ 2)] = 1/1/13 ( 1² + 2 ) -② AG=Rよって、△ABCとODEFの重心は一致する。 ①② 64 [OA| =3, |OB| =2, ∠AOB=60° の △OAB において,点0から直線ABに垂 線を下ろし、直線ABとの交点をHとする。 OA = 1, OB = とするとき, OH を a, 方で表せ。 60腐=AD= JAC = 2 A HJ D とおく、 E G 四角形 EFGHが平行四辺形ならば の 参考 内積と三角形の面積 教 p.34 65 平面上に3点0(0,0), A(5,12), B(-4, 3)がある。 OA, OB のな 教 p.341 す角を0とするとき, 次の問に答えよ。 (1) cost, sin の値を求めて, △OAB の面積を求めよ。 (2) 原点OA (1, a2), B(b1, b2) を頂点とする △OAB の面積Sは S=1/23 lababy となることを利用して,△OABの面積を求めよ。 66 3点A(4, 3),B(8, 5), C(5, 8) を頂点とする三角形の面積を求めよ。 まとめ 5 HG=EFである。 → HG = AG - AH = (AC+ b) - Ab 5 EF ①より + +2 5 5 AC - AB 2 " → AF - AE =(AB + 26+121-1236 12-16 2/2 + 1/2 J 1 12 - 3 +2126 = = DZ = AZ - AD C-C-B) B = AB よってABCDは平行 2節 ・ベクトルの応用 21 23 このとき、

解決済み 回答数: 1
数学 高校生

数3積分の、回転体の体積について質問ですが。 この手の問題は回転させた結果、はみ出る部分があるかどうかを判断して問題を解くと思うのですが、はみ出る場合とはみ出ない場合を問題を見ただけで区別することは不可能ですよね?? 回転体の時は常にはみ出ることを意識しないといけないですか??

基本 例題 167 軸の周りの回転体の体積(2) ①①①①① 265 放物線 y=x-2x と直線 y=-x+2 で囲まれた部分をx軸の周りに1回 転してできる立体の体積Vを求めよ。 CHART & SOLUTION 回転体の体積 回転体では図形を回転軸の一方に集結 をかくと〔図1]のようになる。 ここで, 放物線 まず, 放物線 y=x²-2x と直線 y=-x+2 と直線で囲まれた部分はx軸をまたいでおり, これをx軸の周りに1回転してできる立体は, 図2]の赤色または青色の部分をx軸の周り に1回転してできる立体と同じものになる。 基本例題166 と異なり, この場合はx軸の下側 (または上側) の部分をx軸に関して対称に折 3 12 ③ 基本 166 2 ON x -1 O x -x²+2x [図2] り返した図形を合わせて考える必要があることに注意! 解答 ようにとれる手 2x=-x+2 とすると, x-x-2=0 から (図1) x=-1,2 放物線y=x²-2xのx軸より下側の部分を,x軸に関して対 称に折り返すと右の図のようになり、題意の回転体の体積は, 図の赤い部分をx軸の周りに1回転すると得られる。このと き 折り返してできる放物線y=-x2+2x と直線 y=-x+2 の交点のx座標は,-x2+2x=-x+2 を解いて x=1,2 3 6章 19 体積 よって V=πS˚, {(−x+2)²=(x²-2x)²} dx+π(−x+2)²dx +(-x+2x)³dx =(-x+4x³-3x²-4x+4) dx+x(x-2)'dx -+ f(x)は上の公式を利用してま =x[+x-x-2x+4x] 5 +π 5+ -x²+- 8 +π -19x+x+7=100-207 3 RACTICE 167 8 1515 3 次の3つの図形に分け て体積を計算する。 + 不等式 -sinx≦y≦cos2x, 0≦x≦で定められる領域をx軸の周りに1回転して 0 できる立体の体積Vを求めよ。 Spoly(12) [類 神戸大 ]

解決済み 回答数: 1
数学 高校生

赤枠で囲っているところの変形の仕方を教えて欲しいです!よろしくお願いいたします🙇‍♀️🙇‍♀️

1924STEP数学B 45 S= 2"-12-1 2-1 P=1.2.22.. =21+2++(n-1) -2"-1 2の指数は初項1,末項n-1 項数n-1の等差 数列の和であるから P=2 T=1+1/+1/+ +......+ 2-1 Tは初項1,公比12/2 項数nの等比数列の和で あるから 参考 a, u, v, w, b& 差数列とし、 数列 α, x, 比rの等比数列とする。 数学IIの 「指数 「関数と対数関数」 の内容を用いる と, 関数 y=a+(x-1)d y=arx-1 (r>1) のグラフは、 右 の図のようにな る。 8- 図から,wx, y=ar* T=- 1- (1/2) 1-21-2 12 |1|2 y= 2"-1 wz であること 2"-1 がわかりww>xz, u+ わかる。 よって S"=(2-1)" P2T"=2(n-1).. (2"-1)" =(2"-1)" 2-1) ゆえに, 等式 SP2T" が成り立つ。 [参考]一般に, 初項も公比も0でない項数の任 意の等比数列についても,各項の和,積, 逆数 の和をそれぞれ S, P, T とすると 47 求める元利合計をS円 S=10000 1.006 + 10000 = 10000 1.006(1.00610 1.006-1 10000 1.006(1.0616 0.006 S"=P2T" が成り立つ。 =103282.6. ****** よって 103282円 46 等差数列 α, u, v, w, bの公差を d, 等比 数列 α, x,y,z, b の公比をとする 0<a<bであるから d0 r≠1 くる このとき 48 毎年年末に支払う金 借りた100万円の3年分 10° 1.073 u=a+d, w=b-d, x=ar, z=ar3 また b-a=4d ①, b=ar4.... =ab+(b-a)d-d² — a²² 2 (1) uw-xz=(a+d)(b-d)-arar3 ①,② を代入して uw-xz=a²r¹+4d² - d² - a²r²=3d2>0 よって ww> xz (2) (+)-(x+2) これが 10 1.073円と等 x(1.073-1) ゆえに これを解くと 1.07-1 2024年年末に完済すると ずつ積み立てると考えた 計は 1.072x+1.0 すなわち x+1.07+

解決済み 回答数: 1