学年

教科

質問の種類

数学 高校生

この問題の(1)なんですが、なみ線を引いた 「重解は、x=-a/2より、」をどうやって導き出すかが分かりません!解説してくださると嬉しいです。宜しくお願いいたします🙇

118 第2章 高次方程式 Think 例題 62 3次方程式と実数解 **** αを実数の定数とする. 3次方程式 x+(a-1)x2+(a-3)x-2a+3=0 について、 次の問いに答えよ. (1) 重解をもつように, 定数αの値を定め、そのときの重解を求めよ、 (2)異なる3つの実数解をもつように、定数a の値の範囲を定めよ 考え方 まずは、次数の最も低いαについて整理し 解答 (xの1次式)×(xの2次式) の形に因数分解する. (1)「2次方程式の解が、1次方程式の解を含む」場合と,「2次方程式が重解をもっ 場合の2通りが考えられる. (2)2次方程式が異なる2つの実数解をもち、かつ2次方程式の解が1次方程式の帰 を含まない場合である. (1) f(x)=x3+(a-1)x2+(a-3)x -2a+3 と する. a について整理すると, 次数の低い文字 a 整理 f(x)=x+(a-1)x2+(a-3)x-2a+3 =(x2+x-2)a+x-x-3x+3 数分解する. f(1)=1°+(a-1)12 =(x+2)(x-1)a+x2(x-1) +(a-3)・1−2a+3= 0 -3(x-1) =(x-1){(x+2)a + x2-3} より, f(x) は x-1 を因数に もつ. =(x-1)(x2+ax+2a-3) f(x) =0 とすると, x-1=0 または x2+ax+2a-3=0 したがって,f(x)=0が重解をもつのは, 次の2通りの場合である. (i) x2+ax+2a-3=0 がx=1 を解 にもつ (ii) x2+ax+2a-30 が 重解をもつ (i) のとき, x=1 が解であるから, これを利用して因数分解しても よい。 組立除法 11 a-1 a-3-2a+3 1 a 2a-3 10 1 a 2a-3 (i)のとき, x+ax+2a-3=0 の判別式を 2 12+α・1+2a-3=0 より a=- x=1 が重解 3 残りの解は, 5 x2 (x-1)x+ =0 -= 0 を解いて Dとすると,重解をもつのでD=0である。 +123x-/3/3 CMD=a²-4(2a-3) =a²-8a +12 =(a-2)(a-6) より, したがって (a-2)(a-6)=0 a=2.6 53 重解は,x= より a 2 をもつとき,x=- a=2のとき, x=-1 a=6 のとき, x=-3 の重解を求める. より,x=- ax2+bx+c=0 (α0) が重 b 2a a=2, a=6 のそれぞれの場 残りの解は,どちらもx=1

解決済み 回答数: 1
数学 高校生

数Bの質問です! 86の(2)の問題を分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

2-~- [1] P(0≦x≦1.5) [2] P(0.5≦x≦1) (2)(x)=1- ( 基本 85 めよ。 x (0≤x≤2) [1] P(0.45XS1.2) [2] P(0.5≤x≤1.8) 確率変数 Zが標準正規分布 N (0, 1) に従うとき, 次の確率を求 P(0≤Z≤3) P(-1≤Z≤2) (2) P(1≤Z≤3) (5) P(ZZ-2) (3)P(Z1) 基本 86 よ。 確率変数X が正規分布 N(10,52) に従うとき、次の確率を求め (1) P(X≦10) (2) P(10≦x≦25) (4) P(X≧20) (5) P(X ≤16) (3) P(5X15) テーマ 37 正規分布の利用 応用 ある市の男子高校生500人の身長の平均は170.0cm,標準偏差は5.5cm である。 身長の分布を正規分布とみなすとき,次の問いに答えよ。 (1) 身長が180cm 以上の男子は約何人いるか。 (2) 身長が165cmの男子は,500人中の高い方から約何番目か。小数第1 位を四捨五入して答えよ。 考え方 身長をX, m=170.0, a=5.5 として,Z= 第2章 統計的な推測 解答編 -123 B5 (1) P(03)=P(3)=0.49865 (2) P(1SZS3)=p(3)-(1) 0.49865-0.3413=0.15735 (3) P(Z≧1)=0.5-(1)=0.5-0.3413=0.1587 (4) P-152≤2) 204 =P(-1≤ZS0)+P(OZ≦2) =p(1)+p(2)=0.3413+0.4772=0.8185 (5) P(ZZ-2)=P(-23Z30) +0.5 (2)+0.5 800x0.4772+0.5-0.9772 86ZX-10 とおくとは標準正規分布 N(0.1) に従う。 出 (1)X10 のとき z=10-10 =0 よって 5 P(X≤10)=P(Z≦0) = 0.5 (2) X10 のとき 20, X=25のとき Z- よって 25-10-3 P(10 X≤25) P(0≤Z≤3) =p(3)0.49865 5-10 (3) X=5のとき Z= =-1,5 X=15 のとき 2= 15-10 よって P(5SX≦15)=P(−1≤Z≤1) =P(-1SZS0)+P(0≤Z≦1) =2p(1)=2x0.3413=0.6826 数学B 基本練習 正規分布表 -p (w) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0359 0.0675 0.0714 0.1103 0.0753 0.1141 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.1 0.0398 0.0438 0.0478 0.0517 0.0636 0.0557 0.0596 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1064 0.1026 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 20.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1879 0.1736 0.1700 0.1844 0.1772 0.1808 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 1.0 0.3413 0.3438 0.3461 0.2823 0.2794 0.2764 0.2852 0.4177 0.4319 0.4441 0.4761 0.4767 0.4162 0.4147 0.4279 0.4292 0.4306 0.4394 0.4406 0.4418 0.4429 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0:4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643 2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736 2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807 2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861 3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49897 0.49900 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 解答 身長をXcm とする。 確率変数X が正規分布 N (170.0 5.5) に従うと き, z=X-170.0 X-mを考える。 (4) X=20 のとき Z= よって 20-10 5 =2 5.5 は標準正規分布 N (0, 1) に従う。 (1) X=180 のとき, Z=- 180-170.0 (5) X=16 のとき Z= よって PX≧20)=PZ2)=0.5-p(2) =0.5-0.4772=0.0228 16-10-12 2457.19 5.5 ≒1.82 であるから 500×0.0344=17.2 であるから P(X≧180)=P(Z≧1.82)=0.5-p(1.82)=0.5-0.4656=0.0344 P(X16)=P(Z1.2)=0.5+P(0≤ 1.2) = 0.5+p(1.2) = 0.5 0.3849 =0.8849 約 17人 答 87 得点を X点とする。 確率変数X が正規分布 (2) X=165 のとき Z=- 165-170.0 X-56 5.5 ≒0.91 であるから N(56, 124) に従うとき,Z=- は標準正規 12 P(X≧165)=P(Z≧-0.91)=p(0.91)+0.5=0.3186+0.5=0.8186 分布 N(0, 1)に従う。 80-56 500×0.8186=409.3 であるから 約 409 番目 答 (1) X=80 のとき Z= =2 12 よって P(X280)=P(Z2)=0.5-p(2) =0.5-0.4772=0.0228

解決済み 回答数: 1
数学 高校生

おんさの振動数の測定という実験の考察(2つどちらとも)が分かりません。解説お願いします🙇‍♀️

△ 実験19 おんさの振動数の測定 目的 気柱の共鳴音からおんさの振動数を求める。 見方・考え方 |仮説の設定 機器の破損 に注意 映像 振動数を求めるために必要な波長をどのように求めるかを考える。 おんさ(または低周波発振器) を鳴らしながら, ガラス管内の水面を下げていく と、図のの状態で1回目, ⑥の状態で2回目の共鳴音が聞こえると予想され る。このときの気柱の固有振動数がおんさの振動数と等しいと考えられる。 [準備| 気柱共鳴装置 (長さの目盛りを刻んだガラス a 管,ゴム管,水だめ, 支柱), おんさ(または 低周波発振器), おんさをたたくゴムつきの つち, 温度計 |手順| ①水だめを管口のあたりに支持して, ガラス 管に水を入れる。水面の位置は,ガラス管 のほうは管口近くに,水だめのほうは底の42 近くにする。 ②おんさをたたき, おんさを管口に近づける。 !注意 振動しているおんさがガラス管に b って触れると、ガラス管が割れることがあるので気をつける。 12 ③水だめをゆっくり下げていき, 気柱が最も強く共鳴したときの, ガラス管の 管口から水面までの距離〔m] をはかる。 ④さらに水だめをゆっくり下げていき、2回目に共鳴する位置をさがして,管 口から水面までの距離 I2 〔m〕 をはかる。 5 ⑤ 3, 4の測定をくり返してh, を数回はかりの平均値を求める。 これから,おんさによる音波の波長入(=2(Z2-Z)) [m] を求める。 ⑥ガラス管内の気柱の温度 [℃] をはかり, V=331.5 + 0.6t の式 (p.176) か ら音の速さ V[m/s] を求める。 V ●おんさの振動数f[Hz] を,f=一の式(p.148) から求める。 | 考察| ・気温が高くなった場合, . の値はどのように変化するだろうか。 ・音波の波長を 入 = 4L の式から求めた場合の結果と比較し、違いがあるかを 確認しよう。 結果が異なる場合,どのような理由が考えられるだろうか。 1 1 例題8 涙 ee 元 10 [指] 15 20 25 25 30 35 35 類 GEEN 186 第3編 第2章 音

未解決 回答数: 0