学年

教科

質問の種類

数学 高校生

この二つの例題のように、判別式を使う使わないはどう判断すればいいんですか、、、

44 数学Ⅰ 第2章●2次関数 【教 p.91~93.95】 例題 26 x軸との位置関係 2次関数 y=2x2 -kx+1のグラフがx軸と, 0と1の間, 1と2の間で交 わるとき 定数の値の範囲を求めよ。 □ 20 考え方 解 x=0, 1, 2 のときのyの値の符号を調べればよい。 f(x)=2x2-kx+1 とおく。 Ay 正 2次関数y=f(x) のグラフが右の図のようになれ ばよいから, [f(0)=1>0 正 これはつねに成り立つ。 k>3 ... ① ...2 0 f(1)=2-k+1=3-k<0 より, f(2)=8-2k+1=9-2k>0より<12/13 ①,②より3k</ 1 2 負 sim 207* 2次関数 y=x2+2kx-kのグラフがx軸と,2と0の間,0と2の間で交 わるとき 定数kの値の範囲を求めよ。 例題 26 例題 27 x軸との位置関係 2次関数 y=x2-x+k のグラフがx軸の0<x<2 の部分において異なる 2点で交わるとき, 定数kの値の範囲を求めよ。 考え方 判別式 (頂点のy座標), 軸, 区間の両端におけるyの符号に注目する。 解 f(x)=x2-x+k とおくと, -k· f(x)=(x-1)+k-1212 2次関数y=f(x) のグラフは下に凸で, 軸は直線 x=1/23 である。 軸が 0<x<2 の範囲にあるから, グラフがx軸の 0<x<2 の部分において, 異なる2点と交わるた めの条件は, f(x) =0 の判別式をDとすると, D=1-4k>0より, k<12/1 f(0)=k>0 ......2 f(2)=2+k>0 より k>-2 ①~③より, 0<<- 正 ・① 0 (1) 正 2負 2 11 87 x k 20

回答募集中 回答数: 0
数学 高校生

数2の質問です! 267の(1)で ~ のところは - の符号をつけて考えないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

265(1)(与式)=2fxdx5fxdx+3f dx =2.1x1-5.3x²+3.x+C =1/2x2x'+x+C(Cは積分定数) x軸との上下関係をつかむ。 (2) (与式)= 式)= [1/1 t)=2f(3x2-1)dx=2[xx テーマ 121 3 次関数のグラフと画 応用 曲線y=(x+1)(x-1)(x-3) とx軸で囲まれた部分の面積Sを求めよ。 考え方面積の計算では、まずグラフをかく。そして, x 解答 方程式(x+1)(x-1)(x-3)=0を解くと x=1,1,3 グラフは右の図のようになり 1≦xly 20 1≦x≦3 で yo また y=(x+1)(x-1)(x-3) =x3x²-x+3 よって、求める面積Sは S=(x³-3x²-x+3)dx +(-(x³-3x²-x+3))dx =8 練習 265 次の不定積分,定積分を求めよ。 メー =(-4+8+12-2)-(-4-8+12+2) =12 別解 (与式)= =2(8-2)=12 266 (1) 方程式 x(x-3)²=0を解くと x=0.3 グラフは右の図のように なり 0x3y≧0 0 3 よって, 求める面積Sは S=Soxx-3)2dx=f(x) (x3-6x2+9x)dx 9 --+--+- 81 27 == -54+ 2 4 267 (1) 曲線と直線の交点の座標は、 (1) S(2x³- 3-5x2+3)dx (2) S(-x+3x2+6x-1)dx □ 練習 266 次の曲線とx軸で囲まれた部分の面積Sを求めよ。 (2) y=x(x2-4) (1) y=x(x-3)2 (1) y=x-3x,y=-2x 練習 267 次の曲線または直線で囲まれた部分の面積Sを求めよ。 (2) y=x-2x2,y=x2+6x-8 (2) 方程式(x2-4)=0 y を解くと x=-2,0,2 グラフは右の図のよう になり 2xy≧0, 0≦x≦2yMO よって, 求める面積Sは x+Sol- ( -x3+4x)dx =[2]+[ +2 ] =-(4-8)+(-4+8)=8 [参考] y=x(x2-4) のグラフは原点に関して対称 s=5,xx2-4)dx+ {-x(x2-4)}dx =S(-4x)dx+S(- であるから,S=2x2-4)dx としてもよ い。 J-2 x-3x=-2xの解である。 式を整理してxx=0 よって ゆえに (x+1xx-1)=0 x = 0. ±1 グラフは図のように なり -141407 x³-3x-2x 201 x3-3x≤-2x よって, 求める面積Sは s=${(x-3x)-(-2x)dx +(-2x)-(x³-3x)dx =S°(x_x)dx+S^(-x'+x)dx ++ ●演習問題の解答 1 ■考え方 どの文字に のいずれた 1 (与式)= 2つの曲線の共有点のx座標は、方程式 x3-2x2=x2+6x-8の解である。 式を整理して3-3x2-6x + 8 = 0 よって (x-1)(x²-2x-8)=0 (x-1)(x+2)(x-4)=0 ゆえに 2, 1, 4ストー グラフは右の図のよう になり -2≤x≤1T x3-2x2x2+6x-8 1≦x≦4で 2xx2+6x-8 よって, 求める面積Sは -20 =-3(6 =-3(b =-3( =-3 -3a (2) (与 =(b S=S^_^{(x_2x2)-(x2+6x-8)}dx +S, {(x²+6x−8)—(x³—2x²))dx =(x³-3x²-6x+8)dx +S(-x+3x²+6x-8)dx x3-3x2+8x = 2 781

未解決 回答数: 0