学年

教科

質問の種類

数学 高校生

写真の基礎120の問題なんですけど、どうして、最大値・最小値しか答えがないんですか?答えを見てもわからないの教えて欲しいです🙇‍♀️できたら解き方もお願いします🙏🏻🙇🏻‍♀️

y=a(x-p)^+αの形にして求める。 a>0のとき,x=pで最小値をとる。 最大値はない。 a<0のとき, x=pで最大値gをとる。 最小値はない。 ②② 定義域に制限がある場合の最大・最小 グラフをかいて, 頂点の位置, 定義域の両端におけるyの値に注目する。 y=a(x-p)^+q(h≦x≦k) の最大・最小は,軸x=(頂点のx座標)の位置に よって,次のようになる。 (下の図はα>0 の場合) izj x 大最 中小 hp k x 最 大最 天 小 h k x 最 [最大 小 hp k x 軸が右外 軸が右寄り 軸が中央 軸が左寄り a<0 の場合は, グラフが上に凸で,最大と最小が入れかわる。 ③③3 最大・最小の応用 (文章題) 1 何を変数 (x) にするかを決め、そのとりうる値の範囲 (定義域)を定める。 Va 最 ijvi phkx 2 最大・最小を求めようとする量 (v) , 変数 (x) を用いて表す。 ③変数 (x) の定義域に注意して、②の関数 (xの式y) の最大・最小を求める。 ✓基本 118 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=4x2 (2) y=3x2+7 (3) y=-6x²+5 (3)y=-2(x+1)(−2≦x≦1) 軸が左外 ✓ 基本 119 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=(x-5)2 (2)y=-(x+8)2 (3) y=3(x-1)^ (4) y=2(x+3)²-5 (5)y=-7(x-2)^+3 □基本 121 次の関数の値域と最大値、最小値を求めよ。 (1) y=3x2 (-2≤x≤3) (2)y=-2x2 (5)_y=2(x+1)²—1 (-2≤x≤1) 基本 120 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=x²-2x-4 (2) _y=-x²+6x+2 (3) y=2x2+10x+3 (4) y=-3x2+4x-1 (2≤x≤3) (4) y=(x-3)^+2 (2≤x≤5) (6) y=-2(x-1)²+3 (0≤x≤3)

未解決 回答数: 1
数学 高校生

黄チャートの問題について質問です! 解説下部の蛍光ペンで引いた部分について、なぜ2<なのか教えていただきたいです。2‪√‬15が0<x<20の範囲内にあることを証明したいのはわかりますが、なぜここが2なのかわかりません。2‪√‬15は7と8の間にあるので17、それか、前の... 続きを読む

つよう 2次方程式の応用 基本例題 80 右の図のように,BC=20cm, AB=AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm²となるとき,辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 等しい関係の式で表しやすいように、変数を選ぶ 解答 FG = x とすると, 0 <FG <BC であるから 0<x<20 また, DF=BF=CG であるから 2DF=BC-FG DF= 20-x 2 長方形 DFGE の面積は よって ...... 20-x 2 ② 解が問題の条件に適するかどうかを吟味 FG = x として, 長方形 DFGE の面積をxで表す。そして、面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて •x=20 x2-20x+40=0 DF・FG= =10±2√15 ここで, 02√158 から B PRACTICE 902 D EF x=-(-10)±√(-10)2-1・40 よって,この解はいずれも①を満たす。 したがって FG=10±2√15 (cm) F 20-x ・x 10-8<10-2√15 <20, 2<10+2√15 <10+8 B A U=(5-3)(S-1 E D G C F E G 基本 66 定義域 會∠B=∠C=45°であるか ら, BDF, ACEG も直 角二等辺三角形。 ←解の吟味。 xの係数が偶数 → 26′型 3章 02/15=√60<√64=8 単位をつけ忘れないよう に。 9 2次方程式

回答募集中 回答数: 0
数学 高校生

赤で囲った部分 増減表の-+てどうやって分かるんですか? シータを動かすイメージからですか?

103 最大・最小の応用問題 (1) aを正の定数とする。 台形 ABCD が AD // BC, 基本 10 103 例題 |AB=AD=CD=α, BC >α を満たしているとき、台形の [類 日本女子大 ] ABCDの面積Sの最大値を求めよ。 ・基本 98 重要 104 \ 詳しく(各画) ∠ABC=∠DCB=0 とすると, 解答 0 <8<1で,右の図から HC 文章題では,最大値・最小値を求めたい量を式で表すことがカギ。次の手順で進める。 ① 変数を決め、その変域を定める。 指針 ② 最大値を求める量 (ここでは面積 S) , ① で決めた変数の式で表す。 ③② の関数の最大値を求める。 この問題では,最大値を求めるのに導関数を用いて 増減を調べる。 S= この問題では,AB=DC の等脚台形であるから,∠ABC=∠DCB=0 として,面積 S を9 (と定数α)で表すとよい。 -{a+(2a cos 0+a)}.asin0 =a² sin 0(cos 0+1) ds do Ips よって数 sta) dS=0 とすると do cos0=-1, 0<θ< < π π 0 = 3/ から -α² をとる。 3点O(0, 0), 1 2 0 =a^{cose(cos0+1)+sin0(-sin 0)} =a^{cos B(cos0+1)-(1-cos20)} =a²(cos 0+1)(2 cos 0−1) ds do S B 0 ... ・題材は平面上の図形 ①① す。ただし,00とする。 : + KER asin0円 HO a- a cose. π 3 0 極大 3√3 T π 00におけるS の増減表は右上のようになるから, Sは0=173 で最大値 3√3 B 2 A D <BC> AB=AD = CD から 0<0<π K<E 2 1/12/3× -×(上底+下底)×高さ Sを0で微分。 別解頂点Aから辺BCに 垂線AHを下ろして、 BH = x とすると |S={a+(2x+a)} x√√a²-x² =(x+a)√a^²-x2 これをxの関数と考え, 0<x<a の範囲で増減を調べ る。 4 章 4 関数の値の変化、最大・最小 A ( 12, 0), P(cos, sing)と点Qが,条件 OQ=AQ=PQ を満た [類 北海道大]

解決済み 回答数: 1
数学 高校生

l>0であることは記述していますが 解答にて重要と書いている断りの後半は書いていませんでした。これだと記述不足ですかね?

138 00000 基本例題 85 2次関数の最大・最小と文章題 (2) 直角を挟む2辺の長さの和が20である直角三角形において, 斜辺の長さが最小 の直角三角形を求め、その斜辺の長さを求めよ。 SSPARELS 指針 まず何を変数に選ぶかであるが,ここでは直角を挟む2辺の和 が与えられているから, 直角を挟む一方の辺の長さをxとする。 三平方の定理から, 斜辺の長さは1=√f(x) の形。 ( そこで,まずp=f(x) の最小値を求める。 なお,xの変域に注意。 解答 直角を挟む2辺のうち一方の辺の長さを xとすると,他方の辺の長さは 20-x で表され, x>0, 20-x>0 であるから 0<x<20 ...... ① 斜辺の長さを1とすると, 三平方の定 理から I2=x2+(20-x) 2 1 1 CHART f(x)の最大・最小 平方したf(x) の最大・最小を考える 1 400 200 ○ 1 最小 が成り立つことを根拠にしている (数学ⅡIで学習)。 このことは,右の図から確認することができる。 なお,a<0,6<0のときは成り立たない。 10 20 x =2x²-40x+400 =2(x-10)'+200 ①の範囲で, lはx=10で最小値 200 をとる。 このとき、 他方の辺の長さは 20-10=10 >0であるから, が最小となるときも最小となる。 よって、求める直角三角形は,直角を挟む2辺の長さがともに 10 の直角二等辺三角形で、斜辺の長さは 200=10√2 x 検討 f(x)の最小値の代わりにf(x) の最小値を考えてよい理由 上の解答は, a > 0, 6> 0 のとき RE y4 a<b⇒a²<b² 変数xを定めxが何であ るかを書く。 @+ (E 1辺の長さは正であることを 利用してxの変域を求める。 620 基本84 √²+(20-x にはxの2次式。→基本 形に直してグラフをかく。 グラフは下に凸, 軸は直線x=10, 頂点は点 (10, 200) の断りは重要。 a² 20-x O y=x21 小 大 a b x AS 1.8Aas 練習 ∠B=90°, AB=5,BC=10 の △ABCがある。いま、点Pが頂点Bから出発し ② 85 て辺AB上を毎分1の速さでAまで進む。 また, 点QはPと同時に頂点Cから 出発して辺BC上を毎分2の速さでBまで進む。 このとき, 2点PQ間の距離 D間の距離を求め上

未解決 回答数: 1
数学 高校生

xの範囲を書かないといけないですよね? また、どこか記述に問題あったりしますか?

KA から 基本例題84 2次関数の最大・最小と文章題 (1) 「長さ6mの金網を直角に折り曲げて、 右図のように,直角 な壁の隅のところに長方形の囲いを作ることにした。囲い の面積を最大にするには,金網をどのように折り曲げれば よいか。 基本77 適当な文字 (x) を選び, 最大 最小を求めたい量を(x) 式に表す ことが出発点。 この問題では,端から折り曲げた長さをxmとして,面積Sをxで表す。 次に, S(xの2次式) を基本形に直し,xの変域に注意しながらSを最大とするxの値 を求める。 指針 文章題 CHART 文章題 題意を式に表す 解答 金網の端からxmのところで折り曲げ るとすると, 折り目からもう一方の端 までは (6-x)m になる。 x>0かつ6-x>0 であるから 0<x< 6 ① 金網の囲む面積をSm² とすると, ...... 3) 1 S=x(6-x) で表される。 S=-x2+6x=-(x2-6x) =-(x2-6x+3)+32 =-(x-3)2+9 ①の範囲において, Sはx=3のとき 最大値9をとる。 よって、端から3m のところ、 すなわ ち,金網をちょうど半分に折り曲げれ ばよい。 表しやすいように変数を選ぶ 変域に注意 008 STUE 3439--- 最大 1 10 3 61 DOS- 練習 長さ 6 の線分AB上に 2点 C D を AC=BD ② 84 となるようにとる。 ただし, 0 <AC <3 とする。 線分 AC, CD, DB をそれぞれ直径とする3つ の円の面積の和Sの最小値と, そのときの線分 ACの長さを求めよ。 p. 146 EX63 XE 自分で定めた文字 (変数) が 何であるかを、きちんと書 いておく。 A 辺の長さが正であることか ら,xの変域を求める。 基本形に直して, グラフを かく。 Gor グラフは上に凸, 軸は直 x=3, 頂点は点 (39) 面積が最大となる囲いの形 は正方形。 C 20 B D. 137 3章 10 2次関数の最大・最小と決定

回答募集中 回答数: 0
数学 高校生

黄色でマークした所が分かりません😭 10-8と10+8、2はどこから出てきた数字なんでしょうか❓ 教えてください🙇‍♀️🙇‍♀️

基本例題 80 2次方程式の応用 右の図のように, BC=20cm, AB = AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF, G とする。 長方形 DFGE の面積が20cm² となるとき, 辺 FG の長さを求めよ。 解答 FG=xとすると, 0 <FG < BC であるから 0<x<20 T また, DF=BF=CG であるから 2DF=BC-FG DF=- 20-x 2 長方形 DFGE の面積は DF・FG= よって 20-x 2 CHART & SOLUTION 文章題の解法 ①等しい関係の式で表しやすいように, 変数を選ぶ ② 解が問題の条件に適するかどうかを吟味 SUED FG=xとして, 長方形 DFGE の面積をxで表す。 そして、 面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて x=20 x2-20x+40=0 =10±2√15 ここで, 02√15 <8から D B F x=-(-10)(10)2-1.40 20-x.x 2 よって、この解はいずれも ① を満たす。 したがって FG=10±2√15 (cm) 0=(5-5)(S-1) A 10-8<10-2/15 <20, 2<10+2√15 <10+8 E D G C F ASOCS 1 G 20 1026 KE 基本 66 ← 定義域 ← ∠B=∠C=45° であるか 5, ABDF, ACEG 角二等辺三角形。 €30 - [S] IF I | → 26 HU xxの係数が偶数 ◆解の吟味。 0<2√/15=√60<√64=8 単位をつけ忘れないよう PRACTICE 80② 19 連続した3つの自然数のうち, 最小のものの平方が、他の2数の和に等しい。 この3 数を求めよ。 135 3章 9 2次方程式

未解決 回答数: 0