学年

教科

質問の種類

数学 高校生

この問題の解き方を教えてください (2)の【4】がよく分からないです あとこの場合分けの考え方も教えてください

三角方程式の解の個数 重要 例題 126 aは定数とする。 0≦0 <2πのとき, 方程式 sin' - sin0 = a について 150g (1) この方程式が解をもつためのαのとりうる値の範囲を求めよ。 (2) この方程式の解の個数をαの値によって場合分けして求めよ。 CHART & SOLUTION 方程式f(0)=a の解 2つのグラフy=f(0),y=a の共有点 sin0=k(0≦0<2π)の解の個数 k=±1 で場合分け 期間① の個数はk=±1 のとき1個; −1 <k<1のとき2個;k<-1,1<k のとき0個 150 解答 (1) sin²0-sin0=a sin0=t とおくと ② ただし、0≦0 <2π から 01≦t≦1...... ③ したがって, 方程式 ① が解をもつための条件は, 方程式 ②③ の範囲の解をもつことである。 1-aduh TOL200 250 x>020 (1) £0) ①とする。 t²-t=a 0 方程式②の実数解は、y=-1=(1-212)-1/24 [2]+ の [3] グラフと直線y=α の共有点のt座標であるから, [4]- [5] 右の図より -sas2 a≤2 seas ttt0=p1200mia ⑩ (2) (1) の2つの関数のグラフの共有点のt座標に注目すると 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t = -1 から 1個 [2] 0<a<2のとき, -1<< 0 から 2個 [4] ~ [3] α=0 のとき, t = 0, 1 から 3個 [4] [4] -1/ <a<0のとき,0<t</12/12/3 [1]- 1/12/2<1 <t<1 a <1/12 <a のとき a<-₁ [2] 2 の範囲に共有点がそれぞれ1個ずつあり,そ [1] れぞれ2個ずつの解をもつから 4個 [5] a=-21 のとき, t=1/12 から 2個 [6] 10個 10 -1 基本125 YA) 2 1 021 π y=a *** aor aor 2πi 0 t=sin 0 205 -[3] -[5] - [3] 4€ 16

回答募集中 回答数: 0
数学 高校生

(2)の解答なんですけど、12分のI公式使う時ってそのままで解答していいですか?それとも式を立ててから公式使うですか?

320 基本例題 213 放物線と2本の接線で囲まれた部分の面積 ①000 放物線 y=x2-4x+3 をCとする。 C上の点 (0, 3),(6,15) における をそれぞれ, l1,l2 とするとき,次のものを求めよ。 (1) l1,l2 の方程式 CHART O SO1 COLUTION 解答) (1) y'=2x-4 から l の方程式は すなわち l2 の方程式は すなわち 図 (1) 曲線 y=f(x) 上の点 (α, f(a)) における接線の方程式は y-f(a)=f'(a)(x-α) S= (2) まず, 2 接線 l1,l2の交点のx座標を求め,グラフをかく。この交点のx座 標を境に接線の方程式が変わるから,被積分関数も変わる。 ......! なお,曲線とその接線の場合,被積分関数は, (x-α) の形で表される。 (x-a)+C (Cは積分定数)を利用する この定積分の計算はf(x-4)dx=- 3 と,かなりスムーズになる(p.303 基本例題 201参照)。 y=8x-33 9 2直線l1,l2 の交点のx座標は,-4x+3=8x-33 の解 である。 ゆえに x=3 よって、 右の図から求める面積Sは s={(x²-4x+3)-(-4x+3)}dx +S{(x-4x+3)-(8x-33)}dx =S₁x²dx +S²(x-6) ²dx (x-6)3 .3 13 (2) , l1,l2 で囲まれる図形の面積 y-3=(2・0-4)(x-0) y-15=(2・6-4)(x-6) y=-4x+3 =9+9=18 316 |基本 174,212 45 |15 6 基本2014 •y=f(x) とすると l1 の傾きは f'(0) lz の傾きは f'(6) ◆交点のx座標3は のx座標0と6の (p.321 補足 参照) ・曲線と接線の上下 0≦x≦3では x2-4x+3≧-4 3≦x≦6 では x 2-4x+3≧8x 放物線と直線が で接しているとき (x-α)²を因数に

回答募集中 回答数: 0
数学 高校生

ベクトルに関する問題です。線が引いてあるところがなぜそうなるのかわからないです。

152 2つのベクトルに垂直な単位ベクトル 2つのベクトルa=(2,1,3)と=(1, -1, 0) の両方に垂直な単位ベクトルを 00000 求めよ。 基本例題 y, z) とすると ・求める単位ベクトルを= (x, [1] lel=1*5 let=1 [2] 前方から ae=0, be=0 これらから、x,y, 2の連立方程式が得られ,それを解く。 なお、この問題はp.404 基本例題13 を空間の場合に拡張したものである。 CHART なす角 垂直 内積を利用 求める単位ベクトルをe= (x, de le であるから よって 2x+y+3z=0 1, x-y=0 また、el=1であるから?x+y+z=1 ②から y=x 更に①から これらを③に代入して ゆえに 3x2=1 y, z) とする。 a⋅e=0, b·e=0 e=+ よって u |u| x=-x x2+x2+(-x)=1 1 x=± √√3 【検討 2つのベクトルに垂直なベクトル a=(a₁, az, az), b=(b₁,b₂, b3) KXFL u=azbs-asbz, asbi-abs, arbz-a2bi) はとの両方に垂直なベクトルになる。 各自, qu=0,u=0 となることを確かめてみよう。 また、こ p.489 参照。 このとき 1/11/1/13号同順) 2=F₁ √3 したがって, 求める単位ベクトルは =(//////)(/1/11/11/1) 上の例題では,u=(3,3,-3), lul=3√3から Laに垂直なベクトルの1つ 土 =(1,1,-1) (信州大) 詳しくは の外積という。 「は」として扱う 1.460 基本事項 基本 a₁ b₁ ◄el²=x² + y² +2² b 1 < = + ( + 7/3 + + 3 (3-7) でもよい。 の計算法 X> 463 /3 a3 XXX. ab2a2b1abs-asbababy (2成分) (成分) (y成分) 各成分は の横) (の横) ar 2章 8 空間ベクトルの内積 練習 4点A(4, 1,3), B(3, 0, 2), (-3, 0, 14), D (7, -5, 6) について, AB, 52 CD のいずれにも垂直な大きさのベクトルを求めよ。 [ 名古屋市大〕

回答募集中 回答数: 0
数学 高校生

(2)の線を引いたところが分かりません!求め方を解説お願いします🙇🏻‍♀️

第5問 (選択問題) (配点 20 正射影されたベクトルについて考える。 (1) d = 0, 万 0 とする。 右の図において、夢をのへの正射影ベクトル という。 すなわち万の始点、終点をそれぞれ A, B とし, A, B から に平行な直線に垂線 AA', BB' を引くとき、 AB' が の への正射影ベクトルアである。 ことのなす角が0° < 0 90° を満たすときとは向きが同じである から,' =ka (kは正の実数)と表される。 そこで, kを次の方針1または方針2によって求めてみよう。 がとらのなす角であるから ME 方針 1 の大きさは万の大きさと0を用いてア と表される。 からkを求める。 B Ax 方針 2 条件より, このことからんを求める。 イ A' が成り立つ。これらのこと と d が垂直であるから, ウ との内積は0である。 (数学ⅡⅠI・数学B 第5問は次ページに続く。) 方針 1,方針2より,k= の解答群 Obsin 0 6 sin イ の解答群 sin0 = sin0 = a・b a.b |ab| の解答群 a の解答群 a2 a・b I ① cose 6 cos 0 4 であるとわかる。 ① cost= ④④ cost= ① B' 62 a.b ab a・b a.b ab 4² ②6tane 6 tan 0 ⑤ 1? (02Q2 2b+b a・1 tan 0 = tan 0 = ab a.b a・b ab (3 7-6 a.b b Z (数学ⅡⅠ・数学B 第5問は次ページに続く 広 =k (2)

回答募集中 回答数: 0
数学 高校生

なぜOH=sa+tbとしてるんですか?

p 基本 例題 25 垂心の位置ベクトル 平面上に△OAB があり、OA=5,OB=6, AB=7 とする。 また, △OABの垂 00000 心をHとする。 (1) COS ∠AOB を求めよ。 (2) OA= a, OB = とするとき, OH を a, 1 を用いて表せ。 指針 三角形の垂心とは, 三角形の各頂点から対辺またはその延長に下ろした垂線の交点であり, 解答 △OABの垂心Hに対して, OA⊥BH, OBIAH, ABIOH が成り立つ。 そこで, OA⊥BH といった図形の条件をベクトルの条件に 直して解く。 (2) では OH = sa+t とし, OA・BH=0, OB・AH=0 の2つの条件から,s,tの値を求める。 (1) 余弦定理から EDU COS ∠AOB= OA⊥BH より OA・BH=0 である から よって ゆえに 25s+6(t-1)=0 すなわち 25s+6t=6 ① また, OB ⊥AHよりOB・AH = 0 であるから {(s-1)a+t}=0 (s-1)ã·6+t|b²=0 したがって (2) (1) 5 à·b=|ā||5|cos <AOB=5.6.-= -=6 △OAB は直角三角形でないから,垂心Hは2点A,Bと 一致することはない。 F 21-9 Hは垂心であるから OA⊥BH, OB⊥AH OH = sa + to (s,t は実数)とする。 A+8A CHORUSS 0 52 +62-72 2・5・6 S= a•{sa+(t-1)}=0 tsasaH slal²+(t-1)ã·b=0C=100 よって ゆえに 6(s-1)+36t=0 すなわち s+6t=1 19 ① ② から 1)-(2*4 144 5 24' OH= 12 1 60 5 t= A 5 → 2ä+ 196 a+ 24 144 = p.400 基本事項 ⑤ 631 B ------ A stronas 重要 28 [参考] AB=18- =161²-26-a+la1² H |AB|=7, |a|=5, ||=6で あるから 72=62-2 ・a +5² よって 1=6 18-TA ①垂直→ (内積) = 0 BH = OH-OB O |a| =5, a-6=6 ①垂直→ (内積) = 0 ■AH=OH-OA A HA①-②から 24s=5 HA& 2a-6-6, 161=63 3x+u+= B 421 4 位置ベクトル、ベクトルと図形 X

回答募集中 回答数: 0